KAVAN Cumul 100 - Instruction manual: Difference between revisions
Mrs. Kavan (talk | contribs) |
Mrs. Kavan (talk | contribs) |
||
Line 107: | Line 107: | ||
* Insert and cyano the '''W10''' rear spar (6×3 mm pine stick). | * Insert and cyano the '''W10''' rear spar (6×3 mm pine stick). | ||
* Pin down the wing centre section to your building board. Butt joint the '''W9''' main spar (10×2 mm pine) to the edge of the '''W39''' top D-box sheeting (1.5 mm balsa). Apply white glue to the top of the ribs, riblets and the main spar shear webbing. Insert the '''W9''' main spar into the notches in all ribs and pin it down. Then step by step pin down the '''W39''' balsa sheeting to the ribs. | * Pin down the wing centre section to your building board. Butt joint the '''W9''' main spar (10×2 mm pine) to the edge of the '''W39''' top D-box sheeting (1.5 mm balsa). Apply white glue to the top of the ribs, riblets and the main spar shear webbing. Insert the '''W9''' main spar into the notches in all ribs and pin it down. Then step by step pin down the '''W39''' balsa sheeting to the ribs. | ||
* Once the glue has cured, remove the wing from your building board. Glue the '''W14''' support spar in place as well as the '''W9''' bottom main spar. Use white glue to secure the '''W38''' bottom D-box sheeting in place. '''(Fig. 7)''' | |||
* Sand the front edge of the '''W39''' and '''W38''' balsa sheeting flush with the front edge of the ribs and glue the '''W8''' leading edge in place. | |||
* Glue the '''W24''' bottom cover plates of the flap servo bays between the '''W5''' ribs. Glue the '''W33''' flap root ribs in place. | |||
* Sheet the space between '''W2''' ribs from the bottom and top with '''W20a''', '''W20b''' (with the '''W40''' connector reinforcement plate glued on top), '''W21''', '''W22''' and '''W23'''. '''(Det. C)''' | |||
* Sand the sheeting flush with the edges of '''W2''' ribs. Drill the hole for the front wing bolt through the '''W39''' top sheeting. Taper the top edges of the wing bolt holes to match the supplied countersunk screws. Soak the tapered area with thin cyano to reinforce it. | |||
* Glue the '''W47''' gussets in place. | |||
* Fine sand the entire wing centre section, pay attention to the leading edge, sand the W6 ribs flush. Trial fit the flap servos. Prepare the aileron and flap extension cables. To allow threading the cables after the wing has been covered, you should put a thread through the holes in ribs secured by strips of sticky tape. Or you can glue 6 mm plastic tubes (not included in the kit). See the dotted lines on the building plan. There is a pair of the MPX8 8-pin connectors supplied in the kit suitable for the cable connection of aileron and flap servos and your receiver. The male part (with pins) is to be secured by screws into the fuselage, the female part into the wing. '''(Fig. 11+21)''' | |||
* Solder the extension cables with (+) and (-) pins shared, the remaining pins are for the servo signal leads. You can use regular servo connectors between the wing centre section and outer panels, but the sturdier MR30 connectors (KAV36.131 - not supplied in the kit) are more suitable for the task. If you are going to use them, install the male part (with pins) of the connector into the wing centre section. It is probably for the best installing all the cables before the wing is covered. Do not forget double-check the correct polarity and connection first! The connectors are to be cyanoed to the wing after the covering. | |||
* Use a fine razor saw to cut the root part of flaps through the '''W13'''/'''W19''' trailing edges and between '''W33''' and '''W2''' ribs. Cut through the ribs between the '''W11''' auxiliary spar and '''W12''' flap leading edge with a sharp modeller’s knife or razor saw and remove the flaps. Bevel the leading edge in 27 degrees angle, allowing the up deflection of the flaps (flaps are hinged on the bottom side of the wing). '''(Fig. 8)''' | |||
* Trial fit the carbon wing joiners into the respective bays. There should be a tight fit, no play. If there was a significant play, put some epoxy to the appropriate area of the joiner and sand as necessary once the glue hardens. Trial fit the '''W7''' liteply outer ribs - do not glue yet. | |||
===== Wing outer panels ===== |
Revision as of 08:34, 18 October 2024
Precautions
This RC model is not a toy. Use it with care and strictly following the instructions in this manual.
Assemble this model following stricktly these instructions. DO NOT modify or alter the model. Failure to do so, the warranty will lapse automatically. Follow the instructions in order to obtain a safe and solid model at the end of the assembly
Children under the age of 14 must operate the model under the supervision of an adult.
Assure that the model is in perfect conditions before every flight, taking care that all the equipment works correctly and that the model is undamaged in its structure.
Fly only in days with light breeze and in a safe place away from any obstacles.
You must build the model according to the instructions. Do not alter or modify the model, as doing so may result in an unsafe or unflyable model. Take time to build straight, true and strong. Use proper radio and other equipment that is in first-class condition, properly install all the components and test their correct operation before the first and any further flight. Fly the model only with competent help from a well-experienced modeller if you are not already an experienced RC pilot.
Specification
Wingspan | 2540 mm |
Length | 1435 mm |
All-up weight | 750 g |
Wing section | AG 40–42 |
CG position | 77–81 mm |
Controls | Aileron, flap, rudder, elevator, (motor) |
Recommended RC equipment
- Aileron and flap servo: KAVAN GO-1023MG 4×
- Rudder and elevator servo: KAVAN GO-1020MG/GO-1021MG 2×
- Receiver battery: 2S LiPo 800–1000 mAh 7.4 V
Recommender RC equipment (electric)
- Aileron and flap servo: KAVAN GO-1023MG 4×
- Rudder and elevator servo: KAVAN GO-1020MG/GO-1021MG 2×
- Motor: KAVAN C2836-1120, KAVAN PRO 2836-1050 w. 10×6" folding propeller (32 mm spinner)
- ESC: KAVAN R-40SB, KAVAN PRO-30SB, KAVAN PRO-40SB
- Flight battery: 3S LiPo 750–850 mAh 11.1 V
Recommended glues
Unless stated otherwise, use medium cyanoacrylate (CA) glue (KAV56.9952 Power CA Medium). D-box sheeting and wing ribs are better to be glued using a water-resistant white aliphatic resin, like our KAV56.9960 White Glue SUPER (alternatively, you can use this sort of glue for most of the wood- -to-wood joints). The highly loaded parts (wing roots, wing main spars, firewall etc.) should be glued together using 30 minute (or slower) epoxy offering high strength and enough time for the correct positioning.
Tools and accessories
- Very sharp modeller’s knife (e.g. Excel 16001 with no. 11 blades)
- Scissors
- Electric drill with drill bits
- Wire cutter
- Long nose pliers
- Screwdrivers
- Razor saw
- Sandpaper No. 80, 100, 180, 360–400
- Needle files
- Soldering iron and solder
- Clothing pegs
- Modeller’s pins
- Epoxy mixing stick and vessel
- Masking tape, clear sticky tape
- Rubbing alcohol (for cleaning up excessive epoxy)
- Paper tissue or soft cloth (for cleaning up excessive epoxy)
- Straightedge with scale
- Square edge
- Thin clear plastic film (for protecting the building plan)
- Permanent marker
- Modeller’s sealing iron, heat gun (for covering)
- Lightweight balsa filler
Model assembly
The empennage
Everything has been designed extremely light, yet strong enough. The horizontal tailplane is removable for easy transport/storage.
- Trial fit the parts of the horizontal stabilizer, elevator, fin and rudder – no glue yet! Sand as necessary to obtain perfect fit. Bevel the leading edged of the rudder and elevator to allow the control surface travel as indicated on the building plan.
- Epoxy the T8 and T9 plywood inserts into the T10 stabilizer centre part. Glue together all the parts using medium cyano or white glue. (Fig. 1+2)
- Put the tail feathers aside for now. They will be finished after covering, once the tailplane seat is installed to the tail boom.
Wing
Wing centre section
- Cut out all the CNC milled ribs using a sharp modeller’s knife or jigsaw, check them with the plan and mark the numbers on them with a soft pencil or marker. Sand as necessary to fit all spars easily.
- Assemble the main spar shear webbing. Epoxy the W30 wing joiner bays to the W29 balsa parts. Enclose the bays; epoxy the W31 plywood plates (front side of the shear webbing) and W32 (rear side). Prevent the epoxy from hardening inside the bays. Put the parts together with the carbon joiner inserted, then immediately remove the joiner (do not forget cleaning the joiner using a paper tissue and rubbing alcohol before the glue sets). (Det. B, Fig. 3)
- Bind the joiner bays with the provided Kevlar® thread and soak with medium CA or epoxy. Epoxy together both two shear webbing halves reinforcing the joint with the plywood joiners W27 (short one, front side) and W28 (long one, rear side). (Det. B, Fig. 3+4+5)
- Epoxy together the wing central ribs W1 and W2. Insert 3 mm beech dowels into the holes in order to obtain correct match. Note: Make a left and right pair of ribs.
- Epoxy the plywood wing bolt plates W15 and W18 between the W1/W2 ribs. Glue the balsa blocks W16 and W17 onto them (trim the W17 first to match the outline of the W1 ribs). Sand the W16 flush with the edge of W2 ribs. (Fig. 6)
- Glue the W26 flap servo trays between the W5 ribs.Note: Make a left and right pair of assemblies.
- You can use medium cyano for gluing most of the wing centre section parts. In that case you are supposed to put together most of the wing without glue at first. Once checked for the correct alignment, the cyano is applies to the joints from the outside. Or you can use white glue. In that case the wing is assembled step by step pinned down on the building plan protected by a thin clear plastic film. Start with pinning down the W9 bottom main spar. The W11, W12, W14 and W38 parts are to be glued after the wing is removed from the building board.
- Assembling the wing using cyano: Insert all ribs and riblets into the respective notches, slide on the W13/W19 trailing edge. Cyano the W6 ribs to the shear webbing using the 7 deg dihedral jig (the W7 outer ribs are to be glued later - after the wing centre section has been paired with the wing panels).
- Insert, but not glue, the W11 auxiliary spar (5 mm balsa) and the W12 flap leading edge (7 mm balsa). Align the top edge of these parts flush with the top edge of the ribs (you will trim the protruding part at the bottom later, once glued in place).
- Cyano the W25 flap horn blocks in place.
- Double check the correct position of all ribs and spars. Lay the wing on the building plan. Once satisfied, apply cyano to all joints.Note: Be sure not to glue the W11 and W12 parts to each other, just to the ribs.
- Insert and cyano the W10 rear spar (6×3 mm pine stick).
- Pin down the wing centre section to your building board. Butt joint the W9 main spar (10×2 mm pine) to the edge of the W39 top D-box sheeting (1.5 mm balsa). Apply white glue to the top of the ribs, riblets and the main spar shear webbing. Insert the W9 main spar into the notches in all ribs and pin it down. Then step by step pin down the W39 balsa sheeting to the ribs.
- Once the glue has cured, remove the wing from your building board. Glue the W14 support spar in place as well as the W9 bottom main spar. Use white glue to secure the W38 bottom D-box sheeting in place. (Fig. 7)
- Sand the front edge of the W39 and W38 balsa sheeting flush with the front edge of the ribs and glue the W8 leading edge in place.
- Glue the W24 bottom cover plates of the flap servo bays between the W5 ribs. Glue the W33 flap root ribs in place.
- Sheet the space between W2 ribs from the bottom and top with W20a, W20b (with the W40 connector reinforcement plate glued on top), W21, W22 and W23. (Det. C)
- Sand the sheeting flush with the edges of W2 ribs. Drill the hole for the front wing bolt through the W39 top sheeting. Taper the top edges of the wing bolt holes to match the supplied countersunk screws. Soak the tapered area with thin cyano to reinforce it.
- Glue the W47 gussets in place.
- Fine sand the entire wing centre section, pay attention to the leading edge, sand the W6 ribs flush. Trial fit the flap servos. Prepare the aileron and flap extension cables. To allow threading the cables after the wing has been covered, you should put a thread through the holes in ribs secured by strips of sticky tape. Or you can glue 6 mm plastic tubes (not included in the kit). See the dotted lines on the building plan. There is a pair of the MPX8 8-pin connectors supplied in the kit suitable for the cable connection of aileron and flap servos and your receiver. The male part (with pins) is to be secured by screws into the fuselage, the female part into the wing. (Fig. 11+21)
- Solder the extension cables with (+) and (-) pins shared, the remaining pins are for the servo signal leads. You can use regular servo connectors between the wing centre section and outer panels, but the sturdier MR30 connectors (KAV36.131 - not supplied in the kit) are more suitable for the task. If you are going to use them, install the male part (with pins) of the connector into the wing centre section. It is probably for the best installing all the cables before the wing is covered. Do not forget double-check the correct polarity and connection first! The connectors are to be cyanoed to the wing after the covering.
- Use a fine razor saw to cut the root part of flaps through the W13/W19 trailing edges and between W33 and W2 ribs. Cut through the ribs between the W11 auxiliary spar and W12 flap leading edge with a sharp modeller’s knife or razor saw and remove the flaps. Bevel the leading edge in 27 degrees angle, allowing the up deflection of the flaps (flaps are hinged on the bottom side of the wing). (Fig. 8)
- Trial fit the carbon wing joiners into the respective bays. There should be a tight fit, no play. If there was a significant play, put some epoxy to the appropriate area of the joiner and sand as necessary once the glue hardens. Trial fit the W7 liteply outer ribs - do not glue yet.