KAVAN Beta 1400 - Instruction manual: Difference between revisions
No edit summary |
No edit summary |
||
Line 205: | Line 205: | ||
6) Disconnect the flight battery from the charger; LEDs will glow green, indicating the charger is ready to charge another pack. Unplug the charger from the mains socket if you are not charging another battery. | 6) Disconnect the flight battery from the charger; LEDs will glow green, indicating the charger is ready to charge another pack. Unplug the charger from the mains socket if you are not charging another battery. | ||
{{Note|type=error|text='''Caution:''' Charge the Li-Po battery with the battery charger included in the RC Set or with a fully compatible charger that assures a safe charge to the Li-Po pack. Always follow the safety precautions as laid down in the manufacturer’s manual.}} | {{Note|type=error|text='''Caution:''' Charge the Li-Po battery with the battery charger included in the RC Set or with a fully compatible charger that assures a safe charge to the Li-Po pack. Always follow the safety precautions as laid down in the manufacturer’s manual.}} | ||
In the charging process, keep your charger and your battery in a cool and dark place, away from any possible source of fire. Do not cover the charger or the battery with clothes or similar: ventilation is crucial for the necessary cooling of the devices. | In the charging process, keep your charger and your battery in a cool and dark place, away from any possible source of fire. Do not cover the charger or the battery with clothes or similar: ventilation is crucial for the necessary cooling of the devices. | ||
Line 214: | Line 213: | ||
'''Wing''' | '''Wing''' | ||
# Locate the carbon tube wing joiner, insert it into the housing in the fuselage and slide both wing halves onto the joiner. | # Locate the carbon tube wing joiner, insert it into the housing in the fuselage and slide both wing halves onto the joiner. [[File:BETA - Wing 01.png|border|frameless|450x450px]] | ||
# Connecting the aileron servos: '''A.''' A radio featuring only one aileron channel (like the T8FB supplied in the RTF set): Connect both aileron servos to the Y-cable. Connect the aileron Y-cable to the aileron channel of your receiver (CH1 in the case of T8FB). '''B:''' A radio featuring two independent aileron servo channels: Use two 20–30cm extension cables (not supplied in the kit) to connect aileron servos to your receiver (typically, CH1 and CH5 or CH6 – it depends on the transmitter and its setting – please refer to the instruction manual of your radio). | # Connecting the aileron servos: '''A.''' A radio featuring only one aileron channel (like the T8FB supplied in the RTF set): Connect both aileron servos to the Y-cable. Connect the aileron Y-cable to the aileron channel of your receiver (CH1 in the case of T8FB). '''B:''' A radio featuring two independent aileron servo channels: Use two 20–30cm extension cables (not supplied in the kit) to connect aileron servos to your receiver (typically, CH1 and CH5 or CH6 – it depends on the transmitter and its setting – please refer to the instruction manual of your radio). [[File:BETA - Wing 02.png|border|frameless|450x450px]] | ||
# Secure the wing halves by careful tightening the setting screws on the bottom side of the wing. | # Secure the wing halves by careful tightening the setting screws on the bottom side of the wing. [[File:BETA - Wing 03.png|border|frameless|450x450px]] | ||
'''Taiplanes''' | |||
# Glue the horizontal tailplane into the fuselage using medium or thick cyano. Be sure the elevator horn is on the bottom side. | |||
# Before the glue sets, check the correct alignment of the horizontal tailplane - it has to be square to the fin. | |||
# Insert the elevator push rod into the push rod connector in the elevator horn. |
Revision as of 11:00, 10 April 2024
Introduction
Congratulations on your purchase of the motor-powered glider BETA 1400. You are about to embark on a magical journey into the fascinating world of electric-powered RC aeroplanes. The BETA 1400, manufactured of virtually unbreakable EPO foam, is packed with FEATURES of the latest 2.4GHz radio technology. It is powered with a mighty brushless motor and the LiPo batteries will help you become an experienced pilot in no time. BETA 1400 is not just an entry-level plane but quite a good thermal glider that will please any Sunday pilot - a newcomer as well as a seasoned pro.
Features
- 100% factory-made, partially assembled model
- Aileron, elevator, rudder and throttle control
- Easy handling and high stability; durable, virtually unbreakable electric motor-powered glider
- Powerful brushless outrunner motor
- Large wing area, low weight
- Advanced 2.4GHz eight-channel radio (RTF Set only)
- Lightweight LiPo flight pack (RTF Set only)
- Fast charger for the flight pack (RTF Set only)
Technical specifications
Wingspan | 1400 mm |
Length | 966 mm |
All-up weight | 700–770 g |
Wing Area | 24.5 dm² |
Wing Loading | 28.6–31.4 g/dm² |
Motor | C2814-1400 outrunner |
ESC | KAVAN R-20B 20 A with BEC 5 V |
Safety precautions
General Warnings
An RC aeroplane is not a toy! If misused, it can cause serious bodily harm and damage to property. Fly only on a safe place, following all instructions and recommendations in this manual. Beware of the propeller! Keep loose items that can get entangled in the propeller away from the spinning propeller, including loose clothing or other objects such as pencils and screwdrivers. Ensure that your and other people’s hands and face are kept away from the rotating propeller.
Note on Lithium Polymer Batteries
Lithium Polymer batteries are significantly more vulnerable than alkaline or NiCd/NiMH batteries used in R/C applications. All manufacturer’s instructions and warnings must be followed closely. Mishandling of LiPo batteries can result in fire. Always follow the manufacturer’s instructions when disposing of Lithium Polymer batteries.
Additional Safety Precautions and Warnings
As the user of this product, you are solely responsible for operating it in a manner that does not endanger yourself and others or result in damage to the product or the property of others. This model is controlled by a radio signal subject to interference from many sources outside your control. This interference can cause momentary loss of control, so it is advisable to always keep a safe distance in all directions around your model, as this margin will help to avoid collisions or injury.
Never operate your model with low transmitter batteries.
Always operate your model in an open area away from power lines, cars, traffic, or people.
Avoid operating your model in populated areas where injury or damage can occur.
Carefully follow the directions and warnings for this and any optional support equipment (chargers, rechargeable batteries, etc.) which you use.
Keep all chemicals, small parts and anything electrical out of the reach of children.
Moisture causes damage to electronics. Avoid water exposure to all equipment not specifically designed and protected for this purpose.
Never lick or place any portion of your model in your mouth, as it could cause serious injury or even death.
Set contents
RTF Set:
- 100% factory-made, partially assembled model (4 servos GO-09, brushless motor, 20A ESC, 7x6” prop)
- 2.4GHz 8-channel transmitter and 8-channel receiver
- 11.1 V/1600 mAh Li-Po flight pack
- LiPo fast charger
ARTF Set
- 100% factory-made, partially assembled model (4 servos GO-09, brushless motor, 20A ESC, 7x6” prop)
You will also need
For the RTF Set:
4 AA batteries for the transmitter.
Tools: Small Phillips and flat screwdrivers, 1.5mm Allen key or screwdriver.
Glue: Medium or thick cyanoacrylate glue (e.g. #KAV56.9952 or #KAV56.9953), low or medium strength threadlocker (blue - e.g. #KAV56.9970).
For the ARF Set:
At least a 4-channel transmitter and receiver, Li-Po flight pack 11.1 V 1600–2700 mAh.
Tools: Small Phillips and flat screwdrivers, 1.5 mm Allen key or screwdriver.
Glue: Medium or thick cyanoacrylate glue (e.g. #KAV56.9952 or #KAV56.9953), low or medium strength threadlocker (blue - e.g. #KAV56.9970).
T8FB transmitter controls
Channel and function | Aileron (CH1) | Elevator (CH2) | Throttle (CH3) | Rudder (CH4) |
Default position | R (DOWN) | N (UP) | N (UP) | N (UP) |
- Rotary Knob VrA (CH8)
- Switch A (SwA, CH7)
- Elevator/Rudder Stick (Mode 1) Throttle/Rudder Stick (Mode 2)
- Elevator Trim (Mode 1) Throttle Trim (Mode 2)
- Rudder Trim
- Neckstrap Hook
- Aileron Reverse Switch (AIL)
- Elevator Reverse Switch (ELE)
- Antenna
- Transmitter Handle
- Rotary Knob VrB (CH6)
- Switch B (SwB, CH5)
- Throttle/Aileron Stick (Mode 1) Elevator/Aileron Stick (Mode 2)
- Throttle Trim (Mode 1) Elevator Trim (Mode 2)
- Aileron Trim
- ON/OFF Switch
- Rudder Reverse Switch (RUD)
- Throttle Reverse Switch (THR)
Transmitter
System: 2.4GHz FHSS
Frequency Range: 2.400–2.4835 GHz
Output Power: <20 dBm (Tx)/<4 dBm (BT)
Input voltage: 4.8–11.1 V (4× AA alkaline batteries or NiMH accumulators, 2S or 3S Li-Po)
Receiver (2.4 GHz FHSS)
Frequency Range: 2.400–2.4835 GHz
Output Power: -
Range: ca 500 m on the ground, ca 1000 m in the air
Input voltage: 4.8–10.0 V
Dimensions: 48,5×21×11 mm / Weight: 7 g
Transmitter (RTF set version)
Loading the transmitter batteries
Remove the battery hatch on the back side of the transmitter, pushing the cover at the arrow mark with your thumb. Load 4 fresh alkaline batteries or AA-size accumulators, carefully keeping the correct polarity (marked on the bottom of the battery holder). Plug the battery holder cable into the socket at the bottom of the battery compartment, keeping the correct polarity (+) red wire, (-) black wire. (The transmitter features a protection circuitry – if you connect the plug the other way around, the transmitter will not work but will not get damaged by reversed polarity.)
We especially recommend low self-discharge NiMH batteries such as the Panasonic Eneloop® 1900 mAh or KAVAN 2000 mAh.
Put the hatch back in place.
Charging the transmitter batteries
Charge the batteries prior to the first flight.
Checking the transmitter battery
Turn on the transmitter and check the LED on the front panel - both the red and green have to glow. These LEDs indicate the status of the transmitter, not the transmitter battery voltage. The low-battery alarm is acoustic - once you hear beeping, you have to land immediately and replace/recharge the batteries. If the transmitter beeps immediately after being turned on, DO NOT try to fly at all.
Checking the Servo Reverse Switches position
Set the servo reverse switches to the default position - CH1 DOWN (R), CH2, CH3 and CH4: UP (N). Turn the transmitter off.
Charging the flight battery
Your BETA 1400 is to be powered by a 3-cell Li-Po battery pack. The Li-Po battery supplied in the RTF Set features two connectors: one is for the balanced charge of the cells (JST-XH type) and the other one is dedicated to the discharge (XT60). The RTF set contains a dedicated KAVAN C3 wall fast charger (230 V/50 Hz) designed for charging the flight pack using the balance cable.
Charging the Flight Battery (RTF Set)
1) Connect the power cable to the charger.
2) Plug the charger's power cable into the mains socket (230 V/50 Hz). All the LED glow green and flash red, indicating the charger is ready to charge.
3) Plug the balance connector of your flight battery (JST-XH) into the corresponding socket on the charger.
4) The charger starts charging. LEDs will glow red. If a 2S pack is connected, Cell 1 and Cell2 LEDs will glow red; if a 3S pack is connected, Cell 1, Cell 2 and Cell 3 LEDs will glow red.
5) Once a particular cell in the flight battery is charged, the corresponding LED will glow green. 2S pack will be fully charged, if Cell 1 and Cell 2 LEDs glow green; 3S pack will be fully charged, if Cell 1, Cell 2 and Cell 3 LEDs glow green.
6) Disconnect the flight battery from the charger; LEDs will glow green, indicating the charger is ready to charge another pack. Unplug the charger from the mains socket if you are not charging another battery.
In the charging process, keep your charger and your battery in a cool and dark place, away from any possible source of fire. Do not cover the charger or the battery with clothes or similar: ventilation is crucial for the necessary cooling of the devices.
Assembly
Wing
- Locate the carbon tube wing joiner, insert it into the housing in the fuselage and slide both wing halves onto the joiner.
- Connecting the aileron servos: A. A radio featuring only one aileron channel (like the T8FB supplied in the RTF set): Connect both aileron servos to the Y-cable. Connect the aileron Y-cable to the aileron channel of your receiver (CH1 in the case of T8FB). B: A radio featuring two independent aileron servo channels: Use two 20–30cm extension cables (not supplied in the kit) to connect aileron servos to your receiver (typically, CH1 and CH5 or CH6 – it depends on the transmitter and its setting – please refer to the instruction manual of your radio).
- Secure the wing halves by careful tightening the setting screws on the bottom side of the wing.
Taiplanes
- Glue the horizontal tailplane into the fuselage using medium or thick cyano. Be sure the elevator horn is on the bottom side.
- Before the glue sets, check the correct alignment of the horizontal tailplane - it has to be square to the fin.
- Insert the elevator push rod into the push rod connector in the elevator horn.