KAVAN V20 + ETHOS™ - Mode d'emploi
Vues principales=
Le système d'exploitation ETHOS™ permet aux utilisateurs de personnaliser entièrement les vues principales. Par défaut, seules les informations de base (voir ci-dessous) sont affichées. Vous pouvez facilement modifier ou ajouter des widgets personnalisés. Vous pouvez définir jusqu'à 8 vues principales. Les vues principales ont les mêmes barres supérieure et inférieure. Cependant, vous pouvez définir la vue principale en plein écran. Les détails de la personnalisation se trouvent dans la section Configurer les écrans.
Si vous avez des questions sur le transmetteur V20 et son fonctionnement, veuillez contacter le personnel technique et de service de KAVAN Europe s.r.o. par e-mail (info@kavanrc.com pour les informations techniques générales, service@kavanrc.com pour le service) ou par téléphone (+420 466 260 133 pour les informations techniques générales, +420 463 358 700 pour le service), pendant les heures de travail (8:00–16:00 CET, du lundi au vendredi).
==Barre supérieure
La barre supérieure affiche le nom du modèle et le mode de vol réglé (s'il est configuré). Les icônes sur la droite donnent un aperçu général des paramètres de l'émetteur :
- Statut de l'enregistrement des données
- Icône du mode Trainer
- RSSI 2.4G (FSK et Lora)
- Volume du haut-parleur
- Etat de la batterie de l'émetteur
En touchant les icônes du haut-parleur et de la batterie, vous ferez apparaître les panneaux de contrôle Général (Audio, etc.) et Batterie.
Barre inférieure
La barre inférieure comporte quatre onglets permettant d'accéder aux fonctions avancées, à savoir Accueil, Configuration du modèle, Configuration des écrans et Configuration du système. L'heure du système est affichée à droite. En appuyant sur l'heure, vous ouvrirez les paramètres Date et heure.
==Widgets
La partie centrale des vues principales est constituée de widgets qui peuvent être configurés pour afficher des images, des minuteries, des données de télémétrie, des valeurs radio, etc. L'écran principal par défaut comporte un widget à gauche pour l'image du modèle et trois widgets pour les minuteries, ainsi que l'affichage des trims et des pots. Les widgets peuvent être configurés par l'utilisateur pour afficher d'autres informations. Une fois que plusieurs écrans ont été configurés, il est possible d'y accéder à l'aide d'un geste tactile, d'un geste de balayage ou de commandes de navigation.
Veuillez vous référer à la section Configurer les écrans pour plus de détails.
==Interface utilisateur et navigation L'émetteur V20 est doté d'un écran tactile, ce qui rend l'interface utilisateur très intuitive et simple à contrôler. Il suffit d'appuyer sur les boutons Configuration du modèle (icône de l'avion), Configurer les écrans (icône des écrans multiples), et Configuration du système (icône de l'engrenage) pour accéder directement à ces fonctions. Voir les sections suivantes du manuel pour leur description. Il est également possible d'y accéder à l'aide des boutons [MODEL], [DISPLAY] et [SYSTEM].
- Appuyez sur la touche [BACK] et maintenez-la enfoncée pour revenir à l'écran d'accueil à partir de n'importe quel sous-menu.
- Appuyez sur l'heure du système sur le côté droit de la barre inférieure pour accéder à la section des réglages de la Date et de l'heure.
- Appuyez sur l'icône du haut-parleur ou de la batterie dans la barre supérieure pour faire apparaître les panneaux de contrôle Son et vibration ou Batterie.
Menu de réinitialisation=
Appuyez longuement sur le bouton [ENTER] pour afficher le menu Reset, où vous pouvez réinitialiser la télémétrie, les minuteurs ou les deux en sélectionnant "Reset Flight". Après avoir appuyé sur "Réinitialiser le vol", les vérifications avant le vol seront effectuées.
Contrôles d'édition
Clavier virtuel
Un clavier tactile est disponible pour taper dans les champs de texte.
- Appuyez sur n'importe quel champ de texte (ou appuyez sur le bouton [ENTER]) pour faire apparaître le clavier.
- Appuyez sur le bouton ?123 ou abc pour basculer entre le clavier conventionnel et le clavier numérique.
=Valeurs numériques
Lorsque l'on appuie sur une valeur numérique, une boîte de dialogue apparaît avec des boutons permettant de définir la valeur la plus basse (Min), la valeur par défaut (Default) ou la valeur la plus élevée (Max), ainsi que des boutons "plus" et "moins" permettant d'augmenter ou de diminuer la valeur avec précision. En outre, un curseur situé en bas de l'écran permet de régler la sortie de l'encodeur rotatif en un seul clic sur une plage de 1:1, avec une valeur fine à gauche et une valeur grossière à droite. La valeur du curseur peut être réglée en tournant le bouton multifonction tout en le maintenant enfoncé.
Options avancées
ETHOS™ dispose d'une gamme étendue de paramètres avancés. Pour la plupart des champs numériques, appuyez longuement sur la touche [ENTER] pour afficher le menu des options avancées.
Ouvrez le champ des options avancées en cliquant sur le symbole du menu caché (hamburger) dans le coin supérieur gauche du champ.
Options de valeur
La boîte de dialogue Options de valeur affiche le paramètre que vous êtes en train de régler. Par exemple, vous pouvez définir la valeur des taux au minimum ou au maximum, ou spécifier une source (telle qu'un potentiomètre). En désignant un potentiomètre comme source, vous pouvez contrôler la valeur du paramètre à la volée en tournant le potentiomètre.
Si vous cliquez sur un champ de valeur qui a déjà été modifié en "Source", une boîte de dialogue apparaît pour vous permettre de convertir la valeur de la source actuelle en une valeur fixe. Appuyez sur "Options" pour afficher les options de réglage de la source :
Inversion
La fonction Invert vous permet d'annuler/inverser une source, comme la position d'un interrupteur. Par exemple, au lieu que le commutateur SA soit actif en position "Haut", il le sera en position "Bas".
Bord
Vous pouvez sélectionner l'option Edge si vous avez besoin d'une action unique lorsqu'une source passe de False à True ou de True à False. L'action n'est déclenchée que par le changement d'état, et non par l'état Vrai ou Faux.
Ignorer l'entrée du formateur
Pour les sources d'interrupteurs logiques, cette option peut être réglée pour ignorer les sources provenant de l'entrée de l'émetteur de l'élève. Un cas d'utilisation typique est celui où un interrupteur logique est configuré pour détecter le mouvement des manches de l'émetteur de l'enseignant (par exemple, la commande de l'ascenseur) afin de permettre une action immédiate en cas de problème. Cette option est nécessaire pour éviter que l'interrupteur logique ne soit déclenché par les entrées des manches de l'élève.
Options du capteur
Dans la boîte de dialogue Telemetry source settings, vous trouverez les valeurs Invert, Maximum et Minimum. Certains capteurs proposent également d'autres paramètres spécifiques.
Modes de connexion USB
Mode hors tension
La connexion de l'émetteur hors tension à un PC via un câble USB est le mode DFU (Device Firmware Update) qui permet de flasher le bootloader.
Mode Bootloader
L'émetteur est placé en mode bootloader en allumant la radio avec la touche [ENTER] maintenue enfoncée. Le message d'état "Bootloader" s'affiche à l'écran.
L'émetteur peut alors être connecté à un PC via un câble de données USB. Le message d'état devient "USB branché" et le PC doit afficher deux lecteurs externes connectés. Le premier concerne la mémoire flash du V20 et le second le contenu de la carte MicroSD.
Ce mode est utilisé pour lire et écrire des fichiers sur la carte SD et/ou la mémoire flash du V20.
Mode de mise sous tension
Si l'émetteur est allumé et connecté à l'ordinateur via le câble de données USB, une boîte de dialogue avec les options suivantes s'affiche :
- Joystick : dans ce mode, l'émetteur peut être configuré pour contrôler des simulateurs RC.
- ETHOS Suite : dans ce mode, l'émetteur est en "ETHOS Mode" pour communiquer avec l'ETHOS Suite. Pour plus d'informations sur le mode Ethos, veuillez vous référer à la section Ethos Suite.
- Serial : Dans ce mode, les traces de débogage Lua, si elles sont présentes, sont envoyées via USB. La vitesse de transmission est de 115200 bps. Un pilote de port COM virtuel Windows approprié est STSW-STM32102.
Mode d'urgence
Le mode d'urgence est la réponse de l'émetteur à un événement inattendu, tel qu'une interruption de la minuterie du chien de garde. Un chien de garde est un minuteur qui est constamment redémarré par différentes parties du système ETHOS. Si un dysfonctionnement quelconque empêche la minuterie du chien de garde de redémarrer, elle s'arrête et une réinitialisation matérielle de l'émetteur se produit. En mode d'urgence, l'émetteur redémarre extrêmement rapidement, sans aucun des contrôles de démarrage normaux, afin de reprendre le contrôle du modèle le plus rapidement possible. En mode sans échec, il n'est pas possible d'accéder à la carte microSD.
Le mode sans échec n'offre que les fonctions de base pour contrôler le modèle. L'écran s'éteint et le message Emergency Mode s'affiche, accompagné d'un bip de 300 ms répété toutes les 3 secondes. Les alertes vocales, l'exécution de scripts, l'enregistrement, etc. cesseront de fonctionner. Lorsque le mode d'urgence est activé, posez/arrêtez immédiatement votre modèle.
La cause la plus fréquente du déclenchement du mode d'urgence est une défaillance de la carte MicroSD.
Configuration du système
La configuration du système est utilisée pour configurer les parties matérielles du système de l'émetteur qui sont communes à tous les modèles. Les réglages sont accessibles en sélectionnant l'onglet Devices en bas de l'écran.
Notez que le paramètre qui détermine l'utilisation d'un module RF interne ou externe est spécifique au modèle et est donc défini dans la section "Système RF" des paramètres du modèle.
Vue d'ensemble
Gestionnaire de fichiers
Gérer les fichiers et accéder au firmware flash du TW-ISRM, du S.Port externe, de l'OTA et des modules externes.
Alertes
Configurez les alertes pour le mode silencieux, l'état de la batterie et l'état d'inactivité.
Date et heure
Configurer l'heure du système et les options d'affichage.
Généralités
Configurez le style des menus, la langue du système et les attributs de l'écran LCD tels que la luminosité et le rétroéclairage, ainsi que les modes sonores Audio, Vario et Haptics.
Batterie
Configurer les paramètres de gestion de la batterie.
Hardware
Vérifier les dispositifs d'entrée physique du matériel et calibrer les dispositifs analogiques et les gyroscopes. Permet également de modifier les définitions des types de commutateurs.
Manches
Réglez le mode et l'ordre des canaux par défaut. Les 4 canaux de contrôle peuvent également être renommés.
Sans fil
Configurer le module Bluetooth.
Info
Informations sur le système concernant la version du micrologiciel, le type de cardan et les modules RF.
Gestionnaire de fichiers ==
Le gestionnaire de fichiers permet de gérer les fichiers et l'accès au micrologiciel flash pour le TW-ISRM, le S.Port externe, l'OTA et les modules externes.
Remarque : Lors de la mise à jour du micrologiciel du système, les fichiers du lecteur flash et de la carte SD peuvent également nécessiter une mise à jour.
audio/
Chemin du lecteur USB : (lettre du lecteur MicroSD)/audio/
Ce dossier contient les fichiers audio de l'utilisateur qui peuvent être lus à l'aide de la fonction spéciale "Play track". Voir Modèle / Fonctions spéciales. / Fonctions spéciales. Le format doit être 16kHz ou 32kHz PCM linéaire 16bit ou alaw (EU) 8bit ou mulaw (US) 8bit.
audio/en/system
Chemin du lecteur USB : (lettre du lecteur MicroSD)/audio/fr/système
Ce dossier contient les fichiers audio du système :
- hello.wav - Message de bienvenue "Bienvenue à ETHOS"
- bye.wav - Le message d'adieu n'est pas inclus par défaut pour l'instant, mais vous pouvez ajouter le vôtre, au format .wav.
Appuyez sur [audio] pour afficher le contenu du dossier. Appuyez sur le fichier .wav et sélectionnez Lecture pour l'écouter. Les fichiers peuvent également être copiés, déplacés ou supprimés.
bitmaps/modèles/
Chemin du lecteur USB : (lettre du lecteur MicroSD)/bitmaps/models/ (avant Ethos 1.2.6 ce dossier était bitmaps/user)
Ce dossier est destiné aux images des modèles de l'utilisateur. Le format d'image recommandé pour réduire la charge de calcul du microcontrôleur embarqué V20 est le suivant :
- Format BMP 32 bits avec une taille de 300×280 px
- 8 bits par canal de couleur
- Canal Alpha (transparence)
Règles pour nommer les fichiers d'images :
- Utilisez uniquement les caractères A–Z, a–z, 0–9, ( ) ! - _ @ # ; [ ] + = et espace.
- Le nom ne doit pas contenir plus de 11 caractères, plus 4 caractères pour l'extension du nom de fichier. Si le nom comporte plus de 11 caractères, il apparaîtra dans le gestionnaire de fichiers de la carte SD, mais pas dans l'interface de sélection de l'image du modèle.
Outils de conversion d'images
Il existe plusieurs outils de conversion d'images utiles :
- Windows - https://github.com/Ceeb182/ConvertToETHOSBMPformat (cet outil applique également les règles de dénomination des fichiers)
- sur le Web - https://ethosbmp.hobby4life.nl/
Firmware
Vous trouverez ici les mises à jour du micrologiciel pour le module RF interne V20 TW-ISRM, les modules externes et d'autres dispositifs tels que les récepteurs, etc. A partir de là, ils peuvent être flashés via le S.Port externe de l'émetteur ou sans fil via OTA (Over The Air). Le nouveau firmware doit être copié dans le dossier Firmware après avoir mis le V20 en mode Bootloader et l'avoir connecté à un PC via l'USB.
Appuyez sur le dossier Firmware pour afficher les fichiers firmware copiés dans ce dossier. Appuyez ensuite sur l'option Flash dans la boîte de dialogue qui s'affiche.
Les fichiers peuvent également être copiés, déplacés ou supprimés.
Journaux
Les journaux de données sont stockés ici.
Chemin du lecteur USB : (lettre du lecteur MicroSD)/Logs/modèles/
C'est là que sont stockés les fichiers du modèle. Ces fichiers ne peuvent pas être modifiés par l'utilisateur, mais peuvent être sauvegardés ou partagés à partir d'ici. Il utilise les noms des modèles. Par exemple, un modèle nommé "Swift" portera le nom de fichier "Swift.bin". S'il y a plus d'un modèle "Swift", les autres seront nommés "Swift01.bin" et ainsi de suite.
Lorsque vous modifiez le nom d'un modèle sur l'écran Modifier le modèle, le nom du fichier du modèle (.bin) change également. Le nom du fichier de modèle est affiché en minuscules (le nom du modèle avec les majuscules et les minuscules est stocké dans le fichier bin). Tous les caractères ne sont pas pris en charge pour le nom bin du fichier de modèle, il se peut donc qu'il ne corresponde pas exactement au nom du modèle.
Chemin du lecteur USB : (lettre du lecteur)/modèles/
Il existe des sous-dossiers pour chaque dossier de catégorie de modèle créé par l'utilisateur.
screenshots/
Chemin du lecteur USB : (lettre du lecteur MicroSD)/captures d'écran/
C'est ici que sont stockées les captures d'écran réalisées avec la fonction Capture d'écran. Voir Modèle / Fonctionnalités spéciales. / Caractéristiques spéciales.
scripts/
Chemin du lecteur USB : (lettre du lecteur MicroSD)/scripts/
Les scripts Lua sont stockés ici. Les scripts peuvent être organisés en dossiers individuels.
Attention: Les scripts Lua augmentent le temps de démarrage de l'émetteur. S'ils sont correctement implémentés, le délai ne devrait pas être perceptible, mais si ce n'est pas le cas, le délai peut être très important, au pire indéfini.
Scripts pour les modules externes
Chaque module externe tiers possède son propre fichier Lua et doit être stocké dans son propre dossier.
- scripts/multi
- scripts/elrs
- scripts/ghost
- scripts/crossfire
radio.bin
Chemin du lecteur USB : (lettre du lecteur MicroSD)/radio.bin
Chemin du lecteur USB : (lettre du lecteur MicroSD)/firmware.bin
Ce fichier est créé par le V20 lors de sa première utilisation. Il stocke les paramètres du système. Il doit être sauvegardé avec le dossier models avant de mettre à jour le micrologiciel afin qu'une rétrogradation vers une version plus ancienne puisse être effectuée si nécessaire.
Lors de la mise à jour du micrologiciel de l'émetteur, le fichier " firmware.bin " doit être stocké dans le dossier racine de la carte MicroSD. Une fois que le nouveau fichier firmware.bin est sauvegardé, la mise à jour sera automatiquement téléchargée sur le V20 lorsqu'il sera déconnecté de l'ordinateur.
Note: il peut également être nécessaire de mettre à jour le contenu de la carte SD et du lecteur flash de la radio en même temps.
== Alertes
Mode silencieux
Au démarrage, une alerte de mode silencieux s'affiche lorsque la vérification du mode silencieux est activée et que le son est réglé sur Mode silencieux dans les paramètres Système/Général.
Tension principale
Si le contrôle de la tension de la batterie principale est activé et que la tension de la batterie de l'émetteur est inférieure au seuil défini dans "Low Voltage" dans System'/Battery, le message "Radio battery is low" s'affiche.
Tension RTC
La pile RTC fournit l'énergie nécessaire au circuit interne de l'horloge en temps réel. Le message "RTC Battery is Low" s'affiche lorsque la vérification de la tension de la pile RTC est activée et que la pile bouton RTC est inférieure à 2,5 V, le seuil par défaut de la pile RTC. Il peut être désactivé jusqu'à ce que la pile RTC soit remplacée, mais ne doit pas être désactivé indéfiniment. Le temps réel est utilisé pour l'enregistrement des données et une heure non valide entraînera des difficultés de lecture des journaux, en particulier pour distinguer les sessions de vol.
Avertissement de conflit de capteurs
La détection de conflit de capteurs peut être désactivée. Cela ne devrait être nécessaire que si vous avez des capteurs qui ne répondent pas à la spécification S.Port.
Inactivité
Si la radio n'est pas utilisée pendant plus d'une période d'"inactivité", une alerte vocale "Pas d'activité pendant une longue période" s'affiche, ainsi qu'une alerte haptique si le volume du haut-parleur est faible. La valeur par défaut est de 10 minutes.
Date et heure
Les réglages de la date et de l'heure sont les suivants :
Heure 24 heures
L'horloge s'affiche au format 24 heures lorsqu'elle est allumée.
Affichage des secondes
L'horloge affichera les secondes si cette option est activée.
Date
Fixe la date actuelle à utiliser dans les journaux.
Heure
Définit l'heure actuelle à utiliser dans les journaux.
Fuseau horaire
Permet de configurer le fuseau horaire de l'utilisateur.
Ajuster la vitesse de l'horloge en temps réel
L'horloge en temps réel peut être calibrée pour compenser toute dérive de l'horloge, jusqu'à 41 secondes par jour.
Pour l'étalonnage, déterminez le nombre de secondes que votre horloge gagne ou perd en 24 heures. Réglez la valeur d'étalonnage à douze fois ce nombre de secondes, de manière à ce qu'elle soit négative si votre horloge fonctionne plus vite, et positive si elle fonctionne plus lentement. Vous pouvez ensuite vérifier si votre horloge est précise et ajuster légèrement la valeur d'étalonnage pour obtenir une précision maximale. La valeur d'étalonnage réelle peut être comprise entre -500 et +500.
Réglage automatique à partir du GPS
Lorsque cette option est activée, l'heure et la date sont automatiquement réglées à partir des données du capteur GPS à distance.
Généralités
Les éléments suivants peuvent être configurés ici :
- La langue de l'interface utilisateur ETHOS et de l'audio
- Attributs de l'écran LCD
- Modes et volume audio
Langue
Interface utilisateur
Les langues suivantes sont prises en charge pour les menus d'affichage :
- Anglais
- Allemand
- Tchèque
- Espagnol
- Français
- Chinois
- Hébreu
- Italien
- Néerlandais
- Norvège
- Polonais
- Portugais
Audio
Assurez-vous d'avoir installé le pack vocal correspondant sur votre carte SD afin de garantir une sortie vocale appropriée.
Clavier
Permet de choisir entre les claviers virtuels QWERTY, QWERTZ et AZERTY.
Attributs de l'écran
Les attributs de l'écran LCD peuvent être configurés ici :
Luminosité
Utilisez le curseur pour contrôler la luminosité de l'écran, de gauche à droite pour régler la luminosité de sombre à clair. Une pression longue sur [ENT] fait apparaître les options permettant d'utiliser une source ou de la régler au minimum ou au maximum.
Pot option
Appuyez sur "Utiliser une source" et sélectionnez un potentiomètre à utiliser pour contrôler la luminosité.
Réveiller
Le rétroéclairage de l'écran peut être réveillé de l'état de veille selon les réglages :
- Toujours allumé: le rétro-éclairage est toujours allumé.
- Manches: le rétroéclairage s'allume lorsque des manettes ou des boutons sont actionnés.
- Commutateurs: le rétroéclairage s'allume lorsque des commutateurs ou des boutons sont actionnés.
- Gyro: le rétro-éclairage s'allume lorsque vous inclinez l'émetteur ou lorsque les boutons sont actionnés.
Note: Plus d'une option peut être activée.
Sommeil
Durée d'inactivité avant que le rétroéclairage ne s'éteigne.
Luminosité en mode veille
Utilisez le curseur pour contrôler la luminosité de l'écran en mode veille, de gauche à droite pour régler la luminosité de sombre à clair.
Mode sombre
Sélectionnez un thème d'interface utilisateur clair ou foncé.
Couleur de surbrillance
Permet de sélectionner la couleur de mise en évidence de l'interface utilisateur. La couleur par défaut est le jaune (#F8B038).
Paramètres audio
Les paramètres audio sont les suivants :
Volume principal
Utilisez le curseur pour contrôler le volume audio. Une pression longue sur [ENTER] permet d'utiliser un potentiomètre. Les bips émis pendant le réglage permettent d'évaluer le volume.
Mode audio
- Silencieux: Pas de son. Notez qu'une alerte sera émise au démarrage si la vérification du mode silencieux dans Système / Alertes est activée. / Alertes est sur ON.
- Alarmes seulement: Seules les alarmes seront émises en audio.
- Défaut: Les sons sont activés.
- Souvent: Il y aura également des bips d'erreur lorsque l'on tentera de dépasser la valeur maximale ou minimale des nombres modifiables.
- Toujours: En plus des sons mentionnés dans Souvent, des bips sonores sont émis lorsque l'on navigue dans le menu.
Vario
Les caractéristiques audio des tonalités Vario peuvent être configurées ici.
- Volume: Volume sonore relatif du vario.
- Tangage zéro: Le tangage au taux de montée zéro.
- Tón max: Le pas au taux de montée maximum.
- Répétition: Délai entre les bips à la hauteur zéro.
For more parameters of the Vario system, see Speed sensor in the Telemetry section.
Haptique
- Force: Utilisez le curseur pour contrôler la force des vibrations.
- Mode: Similaire au mode Audio ci-dessus.
Barre d'outils supérieure
Tension numérique
L'indicateur d'état de charge peut être modifié par rapport au mode par défaut pour afficher la valeur numérique de la tension de la batterie de l'émetteur.
RSSI numérique
De même, l'état du RSSI peut passer d'un affichage à barres à une valeur numérique.
Batterie ==
La section Batterie permet de régler les seuils d'alarme de la batterie de l'horloge et de la batterie de l'émetteur.
Tension principale
Il s'agit de la tension nominale de la batterie. La valeur par défaut est de 8,4 V pour une batterie LiPo 2S chargée.
Basse tension
Il s'agit du seuil bas de la tension de la batterie du transmetteur à partir duquel l'alarme se déclenche. La valeur par défaut est de 7,2 V.
Le message d'avertissement "La batterie de la radio est faible" apparaît lorsque le menu Système est sélectionné / Avertissement' menu, le contrôle de la batterie principale est activé et la tension de la batterie radio est inférieure au seuil fixé.
Le message d'avertissement "Batterie radio faible" s'affiche lorsque la vérification de la batterie principale est active dans le menu Système / Alertes et que la tension de la batterie de l'émetteur est inférieure au seuil fixé. / Alertes et que la tension de la batterie de l'émetteur est inférieure au seuil fixé.
Caution: Si cet avertissement apparaît, nous vous recommandons d'interrompre immédiatement le vol et de charger la batterie de l'émetteur! Si la tension de la batterie de l'émetteur tombe à 6,0 V, l'émetteur s'éteint sans autre avertissement pour protéger la batterie de l'émetteur (2S LiPo - 2×3,0 V) et vous ne pourrez plus utiliser le modèle!
Plage de tension d'affichage
Ces paramètres définissent la plage de l'indicateur de batterie dans le coin supérieur droit de l'écran. Les limites de la plage par défaut pour la batterie LiPo sont 6,4 et 8,4 V. De nombreux pilotes augmentent la limite inférieure pour déclencher plus tôt l'avertissement de faible tension de la batterie de l'émetteur afin d'éviter une décharge excessive de la batterie.
Si la batterie est remplacée par un autre type, les limites doivent être réglées en conséquence.
Tension RTC
Affiche la tension de la pile RTC (Real Time Clock) dans l'émetteur. Pour une pile neuve, la tension est de 3,0 V, si la tension est inférieure à 2,7 V, remplacez la pile à l'intérieur de la radio pour assurer le bon fonctionnement de l'horloge. Si la tension descend en dessous de 2,5 V, une alerte s'affiche, voir la section Alertes / Vérification de la pile RTC.
Matériel
La section Matériel permet de tester toutes les entrées, d'effectuer un étalonnage analogique et gyroscopique et de définir les types de commutateurs.
Contrôle du matériel
Le contrôle du matériel vous permet de vérifier la fonctionnalité de toutes les entrées.
Calibrage des éléments analogiques
L'étalonnage des éléments analogiques du transmetteur est effectué de manière à ce que le transmetteur sache exactement dans quelle position se trouve l'élément de commande (cardans, potentiomètres rotatifs et coulissants). L'étalonnage est toujours effectué lors de la première mise en service. Il doit être effectué lors du remplacement des cardans ou de l'un des potentiomètres.
Etalonnage du gyroscope
L'étalonnage du gyroscope doit être effectué pour s'assurer que les sorties du capteur gyroscopique répondent correctement à l'inclinaison de l'émetteur. Cette opération est effectuée automatiquement lors de la première mise en service. Par exemple, la position "horizontale" de l'émetteur correspond à l'angle auquel vous tenez normalement la radio.
Filtre analogique
Ce paramètre peut être utilisé pour activer/désactiver le filtre du convertisseur analogique-numérique (ADC). La valeur par défaut est ON. Cela peut améliorer une éventuelle petite imprécision autour de la position centrale du cardan. Il s'agit d'un réglage global sur cette page Matériel. Dans la section Edit Model, il existe une option spécifique au modèle dans le paramètre Analogs Filter.
Paramètres des pots et des curseurs
Les pots et les curseurs peuvent recevoir des noms personnalisés ici.
Paramètres de commutation
Délai de détection du milieu de l'interrupteur
Ce réglage garantit que la position centrale des interrupteurs à trois voies n'est pas détectée lorsque l'interrupteur est basculé de la position haute à la position basse en un seul mouvement, et vice versa. Il ne doit être détecté que lorsque l'interrupteur s'arrête en position médiane. La valeur par défaut a été changée à 0ms pour s'adapter aux récepteurs stabilisés FrSky lors de la détection de Autocontrôle sur CH12.
Les commutateurs SA à SJ peuvent être définis comme suit :
- Aucun
- Momentané
- 2 positions
- 3 positions
Cela permet d'intervertir les interrupteurs, par exemple l'interrupteur momentané SH peut être remplacé par l'interrupteur à 2 positions SF. Notez qu'il peut être impossible de remplacer un interrupteur momentané ou à 2 positions par un interrupteur à 3 positions si le câblage de la radio ne le permet pas.
Les commutateurs peuvent également être renommés à partir des noms par défaut SA via SJ vers des noms personnalisés. Notez que ces noms seront communs à tous les modèles.
Home Keymap
Les boutons [SYSTEM], [MODEL] et [DISPLAY] peuvent être réaffectés en fonction des besoins de l'utilisateur.
Touches [SYSTEM] et [MODEL]
Pour les boutons [SYSTEM] et [MODEL], seules les options de pression longue peuvent être réassignées à n'importe quelle page Model ou System ou à la page Configure Screens. Une pression courte appelle la section Système ou Modèle respectivement.
Touche [DISPLAY]
Pour la touche [DISPLAY], les options de pression courte et longue peuvent être réassignées à n'importe quelle page Modèle ou Système ou à la page Configuration des écrans.
Inspecteur des valeurs ADC
Affiche les valeurs de conversion analogique-numérique (ADC) des entrées analogiques lues par la CPU.
- Manche gauche horizontal
- Manche gauches verticales
- Manche droites verticales
- Manche droites horizontales
- Potentiomètre 1
- Potentiomètre 2
- Potentiomètre du milieu
- Potentiel du curseur rotatif gauche
- Potentiel du curseur rotatif droit
Manches
Sélectionnez votre mode de manche préféré. En mode 1, les gaz et l'aileron se trouvent sur le manche droit, et la profondeur et le gouvernail sur le manche gauche. En mode 2, les gaz et le gouvernail se trouvent sur le manche gauche, et l'aileron et la gouverne de profondeur sur le manche droit.
Par défaut, les Manches sont nommées comme indiqué ci-dessus pour les modes de manches standard de l'industrie. Ils peuvent être renommés à volonté.
Ordre des canaux
L'ordre des canaux définit l'ordre dans lequel les quatre entrées de manche sont affectées aux canaux de la table de mixage lorsqu'un nouveau modèle est créé par les assistants. L'ordre par défaut est AETR. S'il y a plus d'une surface de chaque type, elles seront regroupées à moins que les quatre premières voies ne soient fixes, voir ci-dessous. Par exemple, pour 2 ailerons, l'ordre des voies sera AAETR.
Quatre premiers canaux fixes
Lorsque cette option est activée, le regroupement des canaux ne se fera pas sur les quatre premiers canaux. Si l'ordre des canaux est AETR, l'assistant créera un modèle adapté aux récepteurs stabilisés SRx. Par exemple, un modèle avec 2 ailerons, 1 gouverne de profondeur, 1 moteur, 1 gouverne de direction et 2 volets sera créé avec un ordre des voies AETRAFF. Si cette option n'est pas activée, l'ordre des canaux sera AAETRFF.
Sans fil ==
Touchez le Mode Bluetooth pour faire apparaître une boîte de dialogue répertoriant les options Bluetooth.
Mode Bluetooth
Le module Bluetooth V20 peut fonctionner en mode télémétrie ou en mode entraîneur.
Télémétrie
En mode télémétrie, la radio peut fonctionner avec l'application FrSky FreeLink et afficher les données de télémétrie sur votre téléphone portable. L'application FreeLink peut également être utilisée pour configurer d'autres appareils, par exemple des récepteurs stabilisés.
Trainer
En mode Trainer, la radio peut être utilisée en mode maître ou esclave pour réaliser la fonction Trainer sans fil. Voir la section Modèle / Trainer pour configurer l'émetteur en tant que maître ou esclave. / Trainer pour configurer l'émetteur en tant que maître ou esclave pour le modèle actuellement sélectionné.
Nom local
Il s'agit du nom Bluetooth local qui apparaît sur les appareils connectés. Le nom par défaut est FrSkyBT, mais il peut être modifié ici.
Adresse locale
Il s'agit de l'adresse locale du module Bluetooth.
Adresse Dist
Lorsqu'un appareil Bluetooth est trouvé et connecté, l'adresse Bluetooth de l'appareil distant est affichée ici.
Recherche d'appareils
Le bouton [SELECT]' de l'appareil sera disponible lorsque le mode Enseignant/Elève est en mode Enseignant (voir la section Modèle / Formateur).
Tapez sur Rechercher des appareils pour mettre la radio en mode de recherche Bluetooth.
Les appareils trouvés sont affichés dans une fenêtre contextuelle vous demandant de sélectionner un appareil. Sélectionnez l'adresse de l'émetteur Bluetooth à utiliser comme esclave.
Info ==
La page Info affiche des informations sur le micrologiciel du système, le type de cardan, la version du micrologiciel du module interne, le micrologiciel du récepteur ACCESS et des informations sur le module externe.
Firmware
Firmware ETHOS et type d'émetteur (V20).
Version du micrologiciel
Version et type du micrologiciel actuel.
Date
Date et heure de la version du micrologiciel.
Manches
Version installée du pilote de cardan à capteur Hall. ADC signifie convertisseur analogique-numérique.
Module interne
Détails du module RF interne, y compris les versions du matériel et du micrologiciel.
Récepteurs
Les détails des récepteurs liés sont indiqués après le module interne. Si le récepteur redondant est relié au même emplacement que le récepteur principal, l'écran affiche alternativement les détails des deux récepteurs.
Module externe
Détails du module RF externe (le cas échéant), y compris le matériel et la version du micrologiciel si le protocole ACCESS est disponible.
Les multimodules ne sont pas affichés.
Model setup
The Model setup menu is used to configure each model’s specific setup. It is accessed by selecting the Airplane tab along the bottom of the Home screen. Conversely, settings that are common to all models are performed in the System menu, which is accessed by selecting the Gear tab instead (please refer to the System section).
Overview
Model select
The Model Select option is used to create, select, add, clone, or delete models. It is also used to create and manage user-specific model category folders.
Edit model
The Edit model option is used to edit the basic parameters for the model as set up by the wizard, and is mainly used to edit the model name or picture. It is also used to configure the function switches, which are model-specific.
Flight modes
Flight modes allow models to be set up for switch selectable specific tasks or flight behaviour. For example, gliders may be set up to have flight modes such as Launch, Cruise, Speed and Thermal. Power planes may have flight modes for Normal flying, Take OFF and Landing. Helicopters have modes such as Normal for spool up and take OFF/landing, Idle Up 1 for aerobatic flying, and Idle Up 2 for 3D aerobatics etc.
Mixer
The Mixer section is where the model’s control functions are configured. It allows any of the many sources of input to be combined as desired and mapped to any of the output channels. This section also allows the source to be conditioned by defining weights/rates and offsets, adding curves (eg Expo). The mix can be made subject to a switch and/or flight modes, and a slow function to be added.
Outputs
The Outputs section is the interface between the setup "logic" and the real world with servos, linkages and control surfaces as well as actuators and transducers. In the Mixer we have set up what we want our different controls to do. This section allows these pure logical outputs to be adapted to the mechanical characteristics of the model. This is where we configure minimum and maximum throws, servo or channel reverse, and adjust the servo or channel center point using the PPM center adjustment, or add an offset using subtrim. We can also define a curve to correct any real world response issues. For example, a curve can be used to ensure that left and right flaps track accurately.
Timers
Timers are used to set the three available timers.
Trims
The Trims section allows you to set trim modes, disable trim, enable extended trim, or enable independent trim for each of the 4 trim switches.
RF System
This section is used to configure the Owner Registration ID (RID), and the internal and/or external RF modules. This is also where receiver binding takes place, and receiver options are configured. The RID is an 8 character string that contains a unique random code, which can be changed if desired. This ID becomes the Owner Registration ID (UID) when registering a receiver. Enter the same code in the Owner ID field of your other transmitters you want to use the Smart Share feature with them. This must be done before creating the model you want to use it on.
Telemetry
Telemetry is used to transmit information from the model back to the transmitter. This information can be quite extensive and includes RSSI (receiver signal strength) and link quality, various voltages, currents and any other sensor outputs such as GPS position, altitude etc. Note that the telemetry screens are set as the main display in the Configure Screens section.
Checklist
The Checklist section is used to define startup alerts for things like initial throttle position, whether failsafe is configured, pot and slider positions, and initial switch positions.
Logical switches
Logic switches are user programmed virtual switches. They aren’t physical switches that you flip from one position to another, however they can be used as program triggers in the same way as any physical switch. They are turned ON and OFF by evaluating the conditions of the programming. They may use a variety of inputs such as physical switches, other logical switches, and other sources such as telemetry values, channel values, timer values, or Global Variables. They can even use values returned by a LUA model script.
Special functions
This is where switches can be used to trigger special functions such as trainer mode, soundtrack playback, speech output of variables, data logging etc. Special Functions are used to configure model specific functions.
Curves
Custom curves can be used in input formatting, in the mixers or in the outputs. There are 50 curves available, and can be of several types (between 2 and 21 point, with either fixed or user-definable x-coordinates). In the Mixer a typical application is using an Expo curve to soften the response around midstick. A curve may also be used to smooth a flap to elevator compensation mix so that the aircraft does not 'balloon up' when flaps are applied. In the Outputs a balancing curve may be used to ensure accurate tracking of the left and right flaps.
Trainer
The Trainer section is used to set the radio as a Master or Slave in a trainer setup. The trainer link can be via Bluetooth or a cable.
Device config
Device Config contains tools for configuring devices like sensors, receivers, the gas suite, servos and video transmitters.
Model select
The Model Select option is accessed by selecting ‘Model select’ from the Model menu. It is used to Select the Current Model, Add a New Model, or Clone or Delete it.
Managing model folders
ETHOS now allows you to create your own Model Folders to categorize and group your models. Typical Model Folder names may be Airplane, Glider, Heli, Quad, Warbird, Boat, Car, Template, Archive etc.
Until you have created and organized your folders, Ethos will automatically create the [Uncategorized] folder. This happens when you upgrade to ETHOS version 1.1.0 alpha 17 or later, or when you copy a model from the net or a friend into the \Models folder on the MicroSD card. ETHOS will automatically delete the ‘Uncategorized’ folder when no longer needed.
To create the first folder, tap [+] to the right of the [Uncategorized] label. Enter a name in the [Create Folder] dialog box and click [OK]. Folder names can have a maximum of 15 characters. Repeat the procedure for other categories. Note that these folders will appear as subfolders in the \Models folder on the SD card.
The model category folders are sorted alphabetically, but the [Uncategorized] folder always appears last in the list.
Tap the folder name to display a dialog box that allows you to rename or delete the folder. If there were models in the folder being deleted, Ethos will automatically place them in the [Uncategorized] folder.
Moving models to another folder
To move the model to another folder, click the model icon and select [Change Folder] in the dialogue box. Tap the folder you want to move it to.
Adding a new model
To create a new model, select the model category under which you want to create the model, and then click the [+] icon to start the model creation wizard. (You may need to create a Model Category first, see above.)
Select the type of model you want to create and follow the instructions.
There are wizards for:
- Airplane
- Glider
- Helicopter
- Multirotor
- Other
The wizards will help you with the basic settings for your model type. Note that model names can have a maximum of 15 characters.
Please note that the elevator setting can be achieved by creating a new aircraft model with 2 ailerons and no tail surfaces and the elevator mixing will be created automatically. The default mix rates are 50%, giving a total of 100% if ailerons and elevator are used at the same time.
The created model will appear in the user-defined model category folder that was active when you started the wizard, and will be sorted alphabetically within each group.
For example, the Airplane wizard will help you with the basic setup of a fixed-wing model. It guides you through a series of steps to configure the basic model setup and allows you to select the number of engines/motors, ailerons, flaps, tail type (e.g. traditional with elevator and rudder or V-tail). Finally, it prompts you to name the model and optionally attach a picture of it. (For a worked example, see the Basic Fixed Wing Airplane section in the Programming Tutorials section).
Selecting a model
Tap on ‘Model select’ to bring up a list of your models.
Quick select
Long touch or long hold the [ENTER] key on the model icon to instantly switch to that model.
Tap on a model to highlight it, then tap on it again to bring up the model management menu.
Options in the model management menu:
- Tap Set current model to set the highlighted model as the current model.
- You can clone the model to duplicate the model. Note that when you clone a model, ETHOS assigns a new receiver number to the clone. If you give it the old receiver number, it will work, no need to rebind it.
- Change the model folder.
- Alternatively, you can delete the model. Note that the Delete option only appears if the selected model is not the current model.
Edit model
The Edit model option is used to edit the basic parameters for the model as set up by the wizard.
Name, picture
The model can be renamed, or an image can be assigned or changed. When searching for an image, a thumbnail preview will be displayed to help you find the correct image.
Model type
Changing the model type will cause all mixes to reset.
Channel assignments
Changing the tailplane or swashplate type will cause all mixes to reset. For other channels, the number of assigned channels can be changed or unassigned.
Function switches
The six Function Switches are available wherever the Active Condition parameters are found.
Configuration
They may be configured as follows:
- 6-Pos with OFF
Pressing any function switch will latch that switch ON. However, pressing a switch that is already ON a second time will turn it OFF, leaving all six function switches OFF.
- 6-POS
Pressing any function switch will latch that switch ON until a different function switch is pressed to latch the newly pressed switch ON.
- 2 x 3-Pos
Breaks the 6 function switches into two groups of 3. Each group can have one switch ON.
- 6 x 2-Pos
Breaks the 6 function switches into 6 latching switches. Each switch can be ON or OFF.
- Momentary
Breaks the 6 function switches into 6 momentary switches. Each switch is ON while depressed.
- Persistent
If enabled, this will cause the function switch to be in the same state when the radio is turned on or the model is reloaded.]
Analogs filter
A model specific Analog to Digital Converter filter can be turned ON/OFF with this setting. This may improve jitter around stick centre. The default value is OFF in which case the global setting will be used.
Note that there is a global setting on the Hardware page under Analogs Filter. This model specific setting will override the global setting.
LUA sources
Lua Sources must be enabled if your model uses sources created in Lua. This will make them available as sources in the programming.
Reset all mixes
Enabling Reset All Mixes will reset all the mixers.
Flight modes
Flight modes bring incredible flexibility to a model setup, because they allow models to be set up for switch selectable specific tasks or flight behavior. For example, gliders may be set up to have switch selectable modes such as Launch, Cruise, Speed and Thermal. Power planes may have flight modes for Normal precision flying, Take OFF, and Landing with either half or full flaps deployed. Helicopters have modes such as Normal for spool up and take OFF/landing, Idle Up 1 for aerobatic flying, and Idle Up 2 for perhaps 3D.
Flight modes remove much of the switching and trimming burden from the pilot.
The great power of flight modes is that they support independent trims and mixer Variables, and can also be used to enable Mixer lines. Together, these features allow for great flexibility. Please refer to the Introduction to Flight Modes in the Tutorials section to see examples of these features applied.
There are no default flight modes defined. Tap on the default flight mode, and select Edit if you wish to rename it, otherwise select Add to define a new flight mode. There may be up to 20 flight modes.
Name
Allows the flight mode to be named.
Active condition
When adding a flight mode the default active condition is inactive, i.e ‘---’. Flight modes may be controlled by switch or button positions, function switches, logic switches, a system event such as throttle cut or hold, or trim positions.
Note that the default flight mode does not have an active condition parameter, because this is the flight mode that is always active when no other flight mode is active. The first flight mode that has its switch ON is the active one. Note that only one flight mode is active at a time.
The active Flight Mode is shown in bold.
Fade in/out
The times assigned for smooth transitions between flight modes. The example shows one second assigned to each.
Trims
Displays the trim values.
Trims can operate in two ways with respect to flight modes.
- Independent per flight mode: With this option, the trim affects the active flight mode only. This option is normally used for the elevator trim, since the elevator trim required will typically vary for each flight mode due for example to differences in wing camber. In fact, this is often the main reason for implementing flight modes.
- Shared across flight modes.: With this option, the trim value for the stick is shared across all flight modes. This is usually appropriate for aileron trim since this trim usually does not vary across flight modes.
Please refer to the Trims section for more detail.
Once programed the flight mode selections are displayed in the mixers. Up to 100 flight modes can be programmed. Like most functions in ETHOS the user can program descriptive text Flight Mode names such as Cruise, Speed, Thermal or Normal, Take OFF, Landing.
Please note when adding a new flight mode to a model all mixes using flight modes must be checked for correct operation, because the new flight mode will by default be active in all mixes using flight modes. This is an issue for example when using a Lock mix to lock a specific channel in a specific FM.
Flight mode management
Tap on a flight mode to bring up a menu which allows you to edit, copy trims, add a new flight mode or delete flight modes.
You can use the 'Move' option to change the priority of a flight mode. The priority of flight modes is in ascending order, and the first one that has its switch ON is the active one.
Mixer
The Mixer function forms the heart of the transmitter. This is where the model’s control functions are configured. The Mixer section allows any of the many sources of input to be combined as desired and mapped to any of the output channels. ETHOS has 100 mixer channels available for programming your model. Normally the lowest numbered channels will be assigned to the servos, because the channel numbers map directly to the channels in the receiver. The V20 Internal RF module has up to 24 output channels available.
The upper mixer channels can be used as 'virtual channels' in more advanced programming, or as real channels by using multiple RF modules (Internal + External) and S.Bus. The channel order is a matter of personal preference or convention, or it may be dictated by the receiver.
The source or input to a mix can be chosen from analog inputs such as the sticks, pots and sliders; the toggle switches or buttons; any defined logic switches; the trim switches; any defined channels; a gyro axis; a trainer channel; a timer; a telemetry sensor; a system value such as the main radio voltage or RTC battery voltage; or a ‘special’ value such as 'minimum', 'maximum' or 0.
This section also allows the source to be conditioned by defining weights/rates and offsets, and adding curves (eg Expo). The mix can be made subject to a switch and/or flight modes, and a slow function can be added. (Note that Delays are implemented in the Logic Switches because they are related to switches.) The mixer includes contextual help information that dynamically changes as mixer options are touched. The first line shows the type of mixer used, such as ‘Aileron’, ‘Elevators’, or ‘Free Mix’ etc. Up to 120 mixer lines may be defined.
If your model was created using one of the model creation wizards in the ‘Model select’ function in the System menu, the base mixer lines will be shown when you tap on the ‘Mixer’.
In addition, the most common predefined mixes can be added as well as free mixes that are user configurable.
There is one mix line for each control/mix and a graphic display for that mix. To edit a mixer line, touch the mixer and touch again for the popup menu, then select Edit. Other options are to add a new mix, to switch to the ‘View per Channel’ grouping view (described in a section lower down), to move the mixer line up or down, to clone a mix, or to delete a mix.
Please note that inactive mixer lines are shown greyed out, to assist in debugging.
The radio asks for confirmation before deleting a mix, in case of inadvertent selection.
Aileron, elevator, rudder mixer
We will use the Ailerons as an example, but the Elevator and Rudder mixes are very similar.
Name
Ailerons has been filled in as the default name, but it can be changed.
Active condition
The default active condition is ‘Always On’, which is appropriate for Ailerons. It may be made conditional by choosing from switch or button positions, function switches, flight modes, logic switches, a system event such as throttle cut or hold, or trim positions.
Flight modes
If any flight modes have been defined, the mix can be made conditional to one or more flight modes. Click on ‘Edit’ and check the boxes for the flight modes in which this mixer line must be active.
Curve
A standard curve option is Expo, which by default has a value of 0, which means the response is linear (i.e. no curve). A positive value will soften the response around 0, while a negative value will sharpen the response. Any previously defined curve may also be selected. The mixer output will then modified by this curve. Alternatively, a new curve may be added. You can specify more than one curve, each with a condition. If more than one condition is true, the curve higher in the list prevails. Note that the curve is applied before the Rates.
Rates
Multiple rates can be defined, subject to a switch position, function switch, logic switch, trim position or flight mode. A line is added for each rate. The default rate (i.e. first rates line) is active when none of the other rates are active. There is a small cross inside an arrow on the left of defined rates that can be used to delete a rates line. In the example above three rates have been set up on switch SB.
Differential
On Ailerons differential (typically more up aileron travel than down) is utilized to reduce adverse yaw and to improve turning/ handling characteristics. A positive value will result in the ailerons having less downward travel, as can be seen in the graph above. (Default = 0. Range -100 to +100). On Elevator differential may be used for planes wanting less down than up elevator, typically in racing situations. Note that the Differential parameter is only present when you have more than one aileron channel.
Channels count
Channel count defines how many Output channels are allocated. In this example two ailerons were configured in the model creation wizard.
Output1, Output2
The model creation wizard assigned channels 1 and 2 to the ailerons, because the default channel order in the System – Sticks menu was set to AETR, i.e. ailerons, elevator, throttle, rudder. The default can be altered if required, but care must be exercised to assess any other impacts to making a change here. Note that long pressing [ENTER] on the selected output channel will take you directly to that page in the Outputs.
Throttle mixer
The Throttle mixer has parameters for managing Throttle Cut and Throttle Hold. Throttle Cut features a throttle input safety interlock, while Throttle Hold has a simple ON/OFFfunction.
Input
The source for the Throttle mix can be selected here. It defaults to the Throttle stick, but can be changed to an analog, switch, trim, channel, gyro axis, trainer channel, timer or special value.
Throttle cut
Throttle Cut features a throttle input safety interlock which ensures that the engine or throttle only starts from a low throttle position.
When combined with Low Position Trim (see below), it can be used for managing the throttle and idle settings on glow or gas powered models.
Active condition: The active condition may be chosen from switch or button positions, function switches, flight modes, logic switches or trim positions.
Sticky: When Sticky is in the ON position, the throttle channel output will be switched to the Idle Output Value (default -100%) as soon as Throttle Cut becomes active. When Sticky is in the OFF position, once Throttle Cut becomes active, the throttle channel output will be switched to the Idle Output Value (default -100%) only when the throttle stick goes below the Trigger value (default -85%).
Trigger Vvlue: The Trigger Value determines the value below which the throttle input triggers the throttle safety interlock. For safety, once the Throttle Cut becomes inactive, the throttle channel output will only leave the Idle Output Value if the throttle input has been below the Trigger Value. This ensures that the engine or motor only starts from a low throttle input value.
Throttle hold
Throttle Hold provides a simple throttle hold function without the throttle input safety interlock of Throttle Cut above.
Active condition: The active condition may be chosen from switch or button positions, function switches, flight modes, logic switches or trim positions.
Value: Once the throttle hold function goes active, the Value setting will be output on the throttle channel. On electric powered models, the throttle hold value is normally (-100%).
Flight modes
If any flight modes have been defined, the mix can be made conditional to one or more flight modes. Click on ‘Edit’ and check the boxes for the flight modes in which this mixer line must be active.
Curve
A curve may be defined to modify the throttle channel output. Any previously defined curve may also be selected.
Rates
Multiple rates can be defined, subject to a switch position, function switch, logic switch, trim position or flight mode. A line is added for each rate. The default rate (i.e. first rates line) is active when none of the other rates are active. There is a small cross inside an arrow on the left of defined rates that can be used to delete a rates line. In the example above three rates have been set up on switch SB.
Low position trim
For glow and gas engines the Low position trim is used to adjust the idle speed. The idle speed can vary depending on the weather, etc., so having a way to adjust the idle speed without impacting the full throttle position is important. If 'Low position trim' is enabled, the throttle channel goes to an idle position of -75% when the throttle stick is at the low position (please refer to the channel bar display at the bottom of the screenshot above). The throttle trim lever can then be used to adjust the idle speed between -100% and -50%. Throttle Cut can then be configured to cut the engine with a switch.
View per channel option (mixer grouping)
With complex mixes it can be difficult to see the effect of other mixer lines on a particular channel. The ‘View per Channel’ option is particularly useful in debugging your mixes, because all the mixes that affect the selected channel are grouped together.
To see the effect of all mixes on the Elevator channel, tap on the Elevators mix, and select ‘View per Channel’ from the popup dialog.
With this ‘View per Channel’ layout the contribution of the various mixes affecting a channel can be easily seen, because the value of each mixer line is shown in both graphical and numerical format.
Managing the ‘View per channel’ display
a) Moving between channels in ‘View per Channel’
Clicking on the summary line (highlighted above) will collapse the channel’s sub mixer lines.
b) Switching back to table view
Clicking on a sub mixer line instead, for example the line highlighted above, will bring up a popup dialog to allow editing the mixer line, switching to Table View, or to delete the mixer line.
Predefined mixes
Airplane library
Free mix
The Mixer function can best be described by making use of a Free Mix, which we will add to the above mixes for illustration purposes. Tap on any Mixer line, and select ‘Add Mix’ from the popup menu to add a new mixer line.
Select Free Mix from the list of available predefined mixes in the Mixer Library.
Next the position for the new mixer line must be chosen.
Tap on ‘Free Mix’ to bring up the edit sub-menu.
Select Edit to open a new screen showing the detailed parameters for the ‘Free Mix’. The graph display on the right will display the mixer output, and the effect of any setting changes that are made.
Name
A descriptive name can be entered for the Free Mix.
Active condition
The default active condition is ‘Always On’. It may be made conditional by choosing from switch or button positions, function switches, flight modes, logic switches, a system event such as throttle cut or hold, or trim positions.
Flight modes
If any flight modes have been defined, the mix can be made conditional to one or more flight modes. Click on ‘Edit’ and check the boxes for the flight modes in which this mixer line must be active.
Source
The source or input to this mix can be chosen from:
a) analog inputs such as the sticks, pots and sliders
b) the toggle switches or buttons
c) any defined logic switches
d) the trim switches
e) any defined channels
f) gyro axis
g) trainer channel
h) timer
i) telemetry sensor
j) system value (e.g. main radio voltage or RTC battery voltage)
k) "special" value, i.e. minimum, maximum or 0
The mixer line will take the value of the source at any instant as its input.
Function type
The Function Type defines how the current mixer line interacts with the others on the same channel. There are three function types:
Add
The output of this mixer line will be added to any other mixer lines on the same output channel. Please note that Addition lines can be in any order (A+B+C = C+B+A).
Multiply
The output of this mixer line will be multiplied with the result of other mixer lines above it on the same output channel.
Replace
The output of this mixer line will replace the result of any other mixer lines on the same output channel.
Lock
A channel which is "locked" will never be changed by any other mix while the locked mixer line is active. The combination of these operations allows the creation of complex mathematical operations.
The combination of these operations allows the creation of complex mathematical operations.
Curve
Curves are applied before the Weight.
A standard curve option is Expo, which by default has a value of 0, which means the response is linear (i.e. no curve). A positive value will soften the response around 0, while a negative value will sharpen the response.
Any previously defined curve may also be selected. The mixer output will then modified by this curve. Alternatively, a new curve may be added.
With the Free Mix and some other mixes, you can specify more than one curve, each with a condition. If more than one condition is true, the curve higher in the list prevails.
Offset
Offset will shift the mixer output up or down by the offset value entered here.
Negative values are allowed.
Weight up
The mixer output in the positive direction will be scaled by the weight value entered here. Negative values are allowed.
Weight down
Similarly, the mixer output in the negative direction will be scaled by the weight value entered here.
Slow up/down
Response of the output can be slowed down with regard to the input change. Slow could for example be used to slow retracts that are actuated by a normal proportional servo.
The value is time in seconds that the output will take to cover the -100 to +100% range.
Channels count
Channel count defines how many Output channels are allocated.
Reverse
The output of this mixer line can be reversed or inverted by enabling this option. Please note that servo reversal should be done under Outputs. This option is for getting the logic of the mixing right.
Output
Any channel can be selected to receive the output from this mixer line. If the Channels Count above is greater than one, then a channel must be configured for each Output.
Var
The VAR mix assigns a value (or a source) to a channel. Multiple weights may be specified, each associated with a condition such as a flight mode, logic switch or switch position.
Trim
The Trim mix makes a control behave like a trim. It has separate Up and Down sources, and has the same trim modes as normal trims.
Aileron, elevator, rudder
Please refer to the detailed Aileron, Elevator, Rudder m i xer description above.
Flaps
The Flaps mix will mix an Input to one or more channels with individual Weights. It also offers Slow Up and Slow Down options.
Throttle
The Throttle mix is for motor control and includes Throttle Cut and Throttle Hold options. Please refer to the detailed Throttle mixer discussion above.
Aileron to Flap
This mix is commonly used on sailplanes so that the flaps move together with the ailerons to increase the model’s aileron response.
Aileron to Rudder
One of the most commonly used mixes for sailplanes, to help the model have more coordinated turns.
Airbrake
The Airbrake mix is similar to the Butterfly mix below, except that it is controlled by an ON-OFF active condition.
Butterfly
Butterfly or crow braking is used to control the rate of descent of an aircraft. The ailerons are set to go up a modest amount, while the flaps go down a large amount. This combination creates a lot of drag, and is very effective for braking and therefore ideal for controlling the landing approach. The input is normally set to a slider (or the throttle stick on a glider).
Compensation is also needed on the elevator to avoid the glider ballooning up when crow is applied.
Camber
The Camber mix is functionally the same as the Butterfly mix, but is usually used to apply some camber to the wing surfaces to increase lift.
Flap to elevator
The Flap to elevator mix is useful for flap/camber/crow compensation, where a custom compensation curve is required.
Elevator to camber
Also known as Snap Flap, this mix adds camber to the wing as elevator is applied. This allows the wing to generate lift more efficiently when the plane is given pitch commands.
Rudder to aileron
This mix is used to counter rudder-induced yaw in knife-edge flight.
Rudder to elevator
This mix can help to improve knife-edge flight when there are coupling issues.
Snap roll
The snap roll is an auto-rotation maneuver in a stalled condition. During a snap, one wing is stalled while the other is accelerated about the roll axis. This creates a sudden roll-rate acceleration that you cannot obtain by simply inputting aileron. To achieve this condition in a model, several inputs must be given, including elevator, rudder and aileron. For example, you can perform an inside left snap by programming the mix to simultaneously apply up-elevator, left rudder and left aileron for 1 to 2 seconds. Recover from the maneuver by neutralizing the sticks and immediately adding right rudder to correct your loss of heading.
Throttle to elevator
This mix allows elevator compensation for planes that change pitch on changing throttle.
Throttle to rudder
This mix will help the plane fly straight when at full throttle; it’s generally needed when flying a vertical up-line.
Test mix
This mix is great for soak testing servos. It includes a range setting, as well as Slow Up and Slow Down.
Offset
The Offset mix is used to add a fixed value to the mixer when an offset is required. A common application is for flaps, where the servo horn is offset in one direction in order to maximize the downward flap travel. This results in the flaps being in a half way down position at servo neutral. The Offset mix can then be used to bring the flaps up to the ‘surface neutral’ position when the flaps mixer output is zero.
Glider library
Free mix
Please refer to the Free Mix description under the Airplane Library section above.
Var
The VAR mix assigns a value (or a source) to a channel. Multiple weights may be specified, each associated with a condition such as a flight mode, logic switch or switch position.
Trim
The Trim mix makes a control behave like a trim. It has separate Up and Down sources, and has the same trim modes as normal trims.
Aileron, elevator, rudder
Please refer to the detailed Aileron, Elevator, Rudder m i xer description above.
Flaps
The Flaps mix will mix an Input to one or more channels with individual Weights. It also offers Slow Up and Slow Down options.
Throttle
The Throttle mix is for motor control and includes Throttle Cut and Throttle Hold options. Please refer to the detailed Throttle mixer discussion above.
Aileron to flap
This mix is commonly used on sailplanes so that the flaps move together with the ailerons to increase the model’s aileron response.
Aileron to rudder
One of the most commonly used mixes for sailplanes, to help the model have more coordinated turns.
Airbrake
The Airbrake mix is similar to the Butterfly mix below, except that it is controlled by an ON-OFF active condition.
Butterfly
Butterfly or crow braking is used to control the rate of descent of an aircraft. The ailerons are set to go up a modest amount, while the flaps go down a large amount. This combination creates a lot of drag, and is very effective for braking and therefore ideal for controlling the landing approach. The input is normally set to a slider (or the throttle stick on a glider).
Compensation is also needed on the elevator to avoid the glider "ballooning" up when crow is applied.
Camber
The Camber mix is functionally the same as the Butterfly mix, but is usually used to apply some camber to the wing surfaces to increase lift.
Flap to elevator
The Flap to Eelevator mix is useful for flap/camber/crow compensation, where a custom compensation curve is required.
Elevator to camber
Also known as Snap Flap, this mix adds camber to the wing as elevator is applied. This allows the wing to generate lift more efficiently when the plane is given pitch commands.
Rudder to aileron
This mix may be used to counter rudder-induced yaw.
Rudder to elevator
This mix can help when there are coupling issues. It can also be used for adding a VTail differential function.
Throttle to elevator
This mix allows elevator compensation for planes that change pitch on changing throttle.
Throttle to rudder
This mix will help the plane fly straight when at full throttle; it’s generally needed when flying a vertical up-line.
Test mix
This mix is great for soak testing servos. It includes a range setting, as well as Slow Up and Slow Down.
Offset
The Offset mix is used to add a fixed value to the mixer when an offset is required. A common application is for flaps, where the servo horn is offset in one direction in order to maximize the downward flap travel. This results in the flaps being in a half way down position at servo neutral. The Offset mix can then be used to bring the flaps up to the ‘surface neutral’ position when the flaps mixer output is zero.
Heli library
Free Mix
Please refer to the Free Mix description under the Airplane Library section above.
Var
The VAR mix assigns a value (or a source) to a channel. Multiple weights may be specified, each associated with a condition such as a flight mode, logic switch or switch position.
Trim
The Trim mix makes a control behave like a trim. It has separate Up and Down sources, and has the same trim modes as normal trims.
Aileron, elevator, rudder
Please refer to the detailed Aileron, Elevator, Rudder mix description above.
Pitch
The Pitch mix mixes the pitch control (default Throttle Stick) to the pitch channel, which is normally channel 6. It controls the collective.
Flight mode
This mix is used to provide a flight mode control to the FBL controller on the Heli. It may be Normal/Idle Up 1/Idle Up 2 or for example Beginner/Sport/3D.
Throttle
The Throttle mix is for motor control and includes Throttle Cut and Throttle Hold options. Please refer to the detailed Throttle mixer discussion above.
Gyro
This mix is used to provide gain settings to the FBL controller, which may for example be flight mode dependent. The gyro channel is often channel 5.
Pitch to rudder
This is for mixing pitch to the rudder channel.
Test mix
This mix is great for soak testing servos. It includes a range setting, as well as Slow Up and Slow Down.
Offset
The Offset mix is used to add a fixed value to the mixer when an offset is required.]
Multirotor Library
Free mix
Please refer to the Free Mix description under the Airplane Library section above.
Var
The VAR mix assigns a value (or a source) to a channel. Multiple weights may be specified, each associated with a condition such as a flight mode, logic switch or switch position
Roll, pitch, yaw
These mixes are similar to Aileron, Elevator and Rudder mixes. Please refer to the Aileron, Elevator, Rudder mix description above.
Flight mode
This mix is used to provide a flight mode control to the FBL controller on the Heli. It may be Normal/Idle Up 1/Idle Up 2 or for example Beginner/Sport/3D.
Throttle
The Throttle mix is for motor control and includes Throttle Cut and Throttle Hold options. Please refer to the detailed T hrottle mix discussion above.
Test mix
This mix is great for soak testing servos. It includes a range setting, as well as Slow Up and Slow Down.
Offset
The Offset mix is used to add a fixed value to the mixer when an offset is required.]
Outputs
The Outputs section is the interface between the setup "logic" and the real world with servos, linkages and control surfaces as well as actuators and transducers. In the Mixer we have set up what we want our different controls to do. This section allows these pure logical outputs to be adapted to the mechanical characteristics of the model. This is where we configure minimum and maximum throws, servo or channel reverse, and adjust the servo or channel center point using the PPM center adjustment, or add an offset using subtrim. We can also define a curve to correct any real world response issues. For example, a curve can be used to ensure that left and right flaps track accurately. The various channels are outputs, for example CH1 corresponds to servo plug #1 on your receiver (with the default protocol settings).
The Outputs screen shows two bar graphs for each channel. The lower (green) bar shows the value of the mixer for the channel, while the upper (orange) bar shows the actual value (in both % and μS terms) of the Output after the Outputs processing, which is what is sent to the receiver. In the example above you can see that both the mixer and output values for CH4 Throttle are at 100%.
The channels that are not being output to the RF module are shown with a darker background. In the example above, all eight channels are being transmitted, so they have a lighter grey background.
Note: For quick access to this monitor screen, a long press of the enter key from the Mixer screen and Flight Modes screens will jump to the Outputs.
Outputs setup
Tap on the Output channel to be edited or reviewed.
Channel preview
A channel preview is shown at the top of the Outputs Setup screen. The mixer value is shown in green, while the channel output value is shown in orange (default theme). A little white marker denotes the 100% point.
Name
The name can be edited.
Invert
Will Invert the channel output, typically to reverse servo direction.
Min/Max
The Channel min and max settings are ‘hard’ limits, i.e. they will never be overridden. They should be set to avoid mechanical binding. Note that they serve as gain or ‘end point’ settings, so reducing these limits will reduce throw rather than induce clipping.
Note that the limits default to +/- 100.0%, but may be increased here to +/- 150.0%.
Warning: When using a redundancy system involving SBUS, servo movements beyond about +/- 125% are not possible. If using more than 125% on the main receiver driving PWM outputs, and this receiver enters failsafe, the servo positions then received from a redundant receiver via SBUS are limited to 125%. In particular, if an output on the main receiver is beyond 125%, then at the point of switching to the redundant receiver, the output will change to 125%.
Center/subtrim
Used to introduce an offset on the output, typically used to center a servo arm. Note that the endpoints are not affected.
Warning: Don't be tempted to use Subtrim to add large offsets - it will build in a large amount of differential into the servo response. The correct way is to add an offset mix.
PWM center
This is similar to subtrim, with the difference that an adjustment done here will shift the entire servo band of movement (including hard limits). This adjustment won't be visible on the channel monitor because it is effectively done in the servo. The advantage of using PWM Center to mechanically center the control surface is that this separates the centering function from the trimming function.
Curve
Allows you to select an Expo or custom curve to condition the output. The popup allows to to either select an existing curve, or to add a new curve. After configuring the curve, an Edit button is added so that you can edit the curve easily.
Curves are a quicker and more flexible way of configuring the center and min/max limits of the outputs, and you get a nice graphic. Use a 3-point curve for most outputs, but use a 5-point curve for things such as the second aileron and flap, so you can synchronize the travel at 5 points. When using a curve it is good practice to leave Min, Max and Subtrim at their 'pass thru' values of -100, 100 and 0 respectively (or -150, 150 and 0 if using extended limits).
Slow up/down
Response of the output can be slowed down with regard to the input change. Slow could for example be used to slow retracts that are actuated by a normal proportional servo. The value is time in seconds that the output will take to cover the -100 to +100% range.
Delay
Please note that a delay function is available under Logic Switches.
Timers
There are 3 fully programmable timers that can count either up or down.
Touching any timer line brings up a popup with options to reset or edit that timer, add a new timer, or to move or copy/paste the timer.
Name
Allows the timer to be named.
Mode
The timer can count Up or Down.
Alarm/start value
If the timer has been set to count Up, the Start Value parameter sets the Alarm Value at which the timer triggers the configured alerts.
If the timer has been set to count Down, the Alarm Value parameter sets the Start Value from which the timer counts down. When it reaches zero, it triggers the configured alerts.
Sound
This setting determines whether the countdown alert is mute, or a beep or spoken value. When Sound mode = Beep there is a longer beep when the timer is expired.
Haptic
Enables haptic feedback to signal that the timer has elapsed.
Countdown start
The timer value from which the countdown alerts start.
Countdown step
The interval at which countdown alerts are made.
Timer elapsed audio file
An audio file may be selected to be played when the timer has elapsed.
Active condition
The active condition parameter which determines when the timer is running has the following options:
Always ON
Always On counts all the time.
Throttle absolute
The timer runs whenever the throttle stick isn't at idle.
Throttle percentage
The timer counts up/down as a percentage of the full stick range.
Throttle trigger
Throttle Trigger starts the timer the first time throttle is advanced.
Switch positions
The timer may also be enabled by a switch position.
Logic switch positions
The timer may also be enabled by a logic switch.
Reset
The timer can be reset by switch positions, function switches, logic switches or trim switch positions. Not that the timer will be held in reset while the Reset condition is valid.
Persistent
Turning Persistent to On allows storing the timer value in memory when the radio is powered OFF or the model is changed, and will be reloaded next time the model is used.
Trims
The Trims section allows you to configure the Trim Range and Trim Step size, or to configure Independent Trims for each of the 4 control sticks. It also allows Cross Trims to be configured.
There are four sets of Trims settings, one set for each stick. For example, you can have independent elevator trims per flight mode, while leaving the aileron and rudder trims as common or combined.
Trim range
The default trim range is +/- 25%. The range may be changed to cover up to the full stick range of 100%. Care must be taken with this option, as holding the trim tabs for too long might add so much trim as to make your model unflyable.
Trim step
The Trim Step parameter allows trims to be disabled, or to configure the granularity of the trim switch steps, from Extra Fine through Medium to Coarse, or Exponential. The Exponential setting gives fine steps near the center, and coarse steps further out. Custom allows the trim step to be specified as a percentage.
Independent trim per flight mode
If you are using Flight Modes, then this setting enables the relevant trim to be independent for each flight mode, instead of being common to all flight modes.
Cross trim
Cross trims can be set up for each trim stick, so you can nominate which trim switch to use for each stick.
RF system
This section is used to configure the Owner Registration ID, and the internal and/or external RF modules.
Owner registration ID
The Owner Registration ID is an 8 character ID that contains a unique random code, which can be changed if desired. This ID becomes the Owner Registration ID when registering a receiver (see below). Enter the same code in the Owner ID field of your other transmitters you want to use the Smart Share feature with them. This must be done before creating the model you want to use it on.
Internal module
Overview
The X20 TD-ISRM internal RF module is a new design that provides tandem 2.4GHz and 900MHz RF paths. It can operate in 3 modes, i.e. ACCESS, ACCST D16 (see below) or TD MODE (see further below).
ACCESS mode
In ACCESS mode the 2.4G and 900M RF paths work in tandem with one set of ACCESS controls. There can be three 2.4G receivers registered and bound or three 900M receivers registered and bound or a combination of 2.4G and 900M for a total of three receivers. In ACCESS mode with a combination of 2.4G and 900M receivers the telemetry for the 2.4G and 900M RF links are active at the same time. The sensors are identified in telemetry as 2.4G or 900M. Please note that the 2.4G band supports 24 channels, while the 900M band supports 16 channels.
There is a new ETHOS telemetry receiver source feature named RX. RX provides the receiver number of the active receiver sending telemetry. RX is available in telemetry like any other sensor for real time display, Logic Switches, Special Functions and data logging.
ACCST D16 mode
In ACCST D16 the TD-ISRM becomes a single 2.4G RF path.
TD mode
In TD Mode the TD-ISRM is in a low latency long range mode using the 2.4G and 900M RF links in Tandem to work with the new Tandem receivers. Tandem supports 24 channels on both bands.
State
The Internal Module can be On or Off.
Type
Transmission mode of the internal RF module. The X20/X20S models operate on the 2.4GHz and/or the 900MHz band. The ACCESS and TD (Tandem) modes can operate on both the 2.4GHz and/or the 900MHz band simultaneously (or individually), while the ACCST D16 operates only on the 2.4GHz band. The Mode must match the type supported by the receiver or the model will not bind! After a Mode change, carefully check model operation (especially Fail-safe!) and fully verify that all receiver channels are functioning as intended.
Type: ACCESS
ACCESS changes the way receivers are bound and connected with the transmitter. The process is broken into two phases. The first phase is registering the receiver to the radio or radios it is to be used with. Registration only needs to be performed once between each receiver / transmitter pair. Once registered, a receiver can be bound and re-bound wirelessly with any of the radios it is registered with, without using the bind button on the receiver.
[Having selected the ACCESS mode, the following parameters must be set up:]
State
Enable or disable the 2.4G RF module.
2.4G Antenna
Select Internal or External (on ANT1 connector) Antenna. Although the RF stage has built-in protection, it is good practice to ensure that an external antenna has been fitted before selecting the External antenna. Please note that the antenna selection is on a per model basis, so each time a model change selection is made ETHOS sets the antenna mode for the given model.
Phase One: Registration
a) Initiate the registration process by selecting [Register]. A message box with "Waiting...." will pop up with a repeating "Register" voice alert.
b) While holding down the bind button, power up the receiver, and wait for the red & green LEDs to become active. The "Waiting..." message changes to "Receiver Connected", and Rx Name field will be filled in automatically.
c) At this stage the Reg. ID and UID can be set:
• Reg. ID: The Registration ID is at owner or transmitter level. This should be a unique code for your X20/X20S and transmitters to be used with Smart Share. It defaults to the value in the Owner Registration ID setting described above at the start of this section, but can be edited here. If two radios have the same ID you can move receivers (with the same Receiver No for a given model) between them by simply using the power on bind process.
• RX name: Filled in automatically, but the name can be changed if desired. This can be useful if you are using more than one receiver and need to remember for example that RX4R1 is for Ch1-8 or RX4R2 is for Ch9-16 or RX4R3 is for Ch17-24 when rebinding later. A name for the receiver can be entered here.
• UID is used to distinguish between multiple receivers used simultaneously in a single model. It can be left at the default of 0 for a single receiver. When more than one receiver is to be used in the same model, the UID should be changed, normally 0 for Ch1-8, 1 for Ch9-16, and 2 for Ch17-24. Please note that this UID cannot be read back from the receiver, so it is a good idea to label the receiver.
d) Press [Register] to complete. A dialog box pops up with "Registration ok". Press [OK] to continue.
e) Turn the receiver off. At this point the receiver is registered, but it still needs to be bound to the transmitter to be used. It is now ready for binding.
Phase Two: Model ID, Channel Range, Binding, and Module Options
Model ID
When you create a new model, the Model ID is automatically allocated. The Model ID must be a unique number because the Smart Match function ensures that only the correct Model ID will be bound to. This number is sent to the receiver during binding, so that it will then only respond to the number it was bound to. Receiver matching is still as important as it was before ACCESS. The Model ID can be changed manually. Note also that the Model ID is changed when the model is cloned.
Channel range
Since ACCESS supports 24 channels, you normally choose Ch1-8, Ch1-16, Ch9-16 or Ch17-24 for the receiver being set up. Note that Ch1-16 is the default.
The choice of transmitter channel range also affects the transmitted update rates. Eight channels are transmitted every 7ms. If using more than 8 channels, then the channel update rates are as follows:
Channel Range | Update Rate | Notes |
1-24 | 21ms | Ch1-8, then Ch9-16, then Ch17-24 sent in rotation |
1-16 | 14ms | Ch1-8, Ch9-16, sent alternately |
1-8 | 7ms | Ch1-8 |
Racemode | 4ms | Digital servos only |
Racing mode
Racing mode offers a very low latency of 4ms with RS receivers. The TD-ISRM module and the RS receiver must be on v2.1.7 or later.
If the Channel Range is set to Ch1-8, it becomes possible to select a source (e.g a switch) which will enable Race Mode. Once the RS receiver has been bound (see below), and Racing mode has been enabled, the RS receiver must be re-powered for Racing mode to take effect.
Bind
Receiver binding enables a registered receiver to be bound to one of the transmitters it has been registered with in phase 1, and will then respond to that transmitter until re-bound to another transmitter. Be certain to perform a range check before flying themodel.
Warning – very important: Do not perform the binding operation with an electric motor connected or an internal combustion engine running.
- Turn the receiver power off.
- Confirm that you are in ACCESS mode.
- Receiver 1 [Bind]: Initiate the binding process by selecting [Bind]. A voice alert will announce "Bind" every few seconds to confirm that you are in bind mode. A popup will display "Waiting for receiver….".
- Power up the receiver without touching the bind button. A message box will pop up 'Select device' and the name of the receiver you have just powered on.
- Scroll to the receiver name and select it. A message box will pop up indicating that binding was successful.
- Turn OFF both the transmitter and the receiver.
- Turn the transmitter on and then the receiver. If the Green LED on the receiver is on, and the Red LED is off, the receiver is linked to the transmitter. The receiver/transmitter module binding will not have to be repeated, unless one of the two is replaced.
The receiver will only be controlled (without being affected by other transmitters) by the transmitter it is bound to.
The receiver selected will now show for RX1 the name next to it.
The receiver is now ready for use.
Repeat for Receiver 2 and 3 if applicable.
Refer also to the Telemetry section for a discussion on RSSI.
Adding a redundant receiver
A second receiver may be bound to an unused slot, e.g. either RX2 or RX3 to provide redundancy in case of reception problems. Either a 2.4G or 900M receiver may be the backup for redundancy. Our example below shows a 900M receiver being added.
- Connect the SBUS Out port of the redundant receiver to the SBUS IN port of the main receiver.
- Power up the receivers (the redundant receiver can be powered via the SBUS cable.
- Register the new receiver.
- Switch OFF the receivers.
- Tap 'Bind' on either the RX2 or RX3 line.
- Power up the receivers. Select the R9 redundant receiver. Tap on OK. Ensure that the Green LED on the redundant receiver is ON. The redundant receiver is now bound.
- The redundant receiver will now be listed.
Note: Although it is possible to bind both the main and redundant receivers to the same UID by powering them up individually, you will not have access to the Rx options while both are powered up.
Set - receiver options
Tap the Set button next to Receiver 1, 2 or 3, and to bring up Receiver Options:
Options
Telemetry 25mW: Checkbox to limit telemetry power to 25mW (normally 100mW), possibly required if for example servos experience interference from RF being sent close to them.
High PWM speed: Servo update rates are completely determined by the receiver. This checkbox enables a 7ms PWM update rate (vs 18ms standard). Ensure that your servos can handle this update rate.
Please refer to the Channel Range (Access) section for details on the update rate set at the transmitter.
Port: Allows selection of the SmartPort on the receiver to use either S.Port, F.Port or the FBUS (F.Port2) protocol. The F.Port protocol was developed with the Betaflight team to integrate the separate SBUS and S.Port signals. FBUS (F.Port2) also enables one Host device to communicate with several Slave devices on the same line. For more information about the port protocol, please refer to the protocol explanation on the official FrSky website.
SBUS: Allows selection of SBUS-16 channel or SBUS-24 channel mode. Be aware that all connected SBUS devices have to support the SBUS-24 mode in order to activate the new protocol. SBUS-24 is an FrSky development of the SBUS-16 Futaba protocol.
Channel mapping: The receiver Options dialog also gives the ability to Remap channels to the receiver pins.
Share
The Share feature provides the ability to move the receiver to another ACCESS radio having a different Owner Registration ID. When the Share option is tapped, the receiver green LED turns off.
On target radio B, navigate to the RF System section and Receiver(n) and select Bind. Note that the Share process skips the Registration step on Radio B, because the Owner Registration ID is transferred from radio A. The receiver name from the source radio pops up. Select the name, the receiver will bind and its LED will go green.
A "Bind successful" message will pop up.
Tap on OK. Radio B now controls the receiver. The receiver will remain bound to this radio until you choose to change it.
Press the EXIT button on Radio A to stop the Share process.
The receiver can be moved back to radio A by rebinding it to radio A.
Note: You do not need to use 'Share' if all your radios are using the same Owner ID / registration number. You can simply put the radio you want to use in bind mode, turn on the receiver, select the receiver in the radio and it will bind with that radio. You can switch to another radio the same way. It is best to keep the model receiver numbers the same when copying the models.
Reset bind
If you change your mind about sharing a model, select 'Reset bind' to clean up and restore your bind. Power cycle the receiver, and it will be bound to your transmitter.
Reset – Receiver
Tap on the Reset button to Reset the receiver back to factory settings and clear the UID. The receiver is unregistered with X20.
Type: ACCST D16
Mode ACCST D16 is for the ACCST 16ch two-way full duplex transmission, also known as the "X"-mode. For use with the legacy “X” series receivers.
2.4G
ACCST D16 operates on 2.4G, so the 2.4G RF section is on by default.
Antenna
Select Internal or External (on ANT1 connector) Antenna. Although the RF stage has built-in protection, it is good practice to ensure that an external antenna has been fitted before selecting the External antenna. Please note that the antenna selection is on a per model basis, so each time a model change selection is made ETHOS sets the antenna mode for the given model.
Model ID
When you create a new model, the Model ID is automatically allocated. The Model ID must be a unique number because the Model Match function ensures that only the correct Model ID will be bound to. This number is sent to the receiver during binding, so that it will then only respond to the number it was bound to. The Model ID can be changed manually.
Channel range
Choice of which of the radio's internal channels are actually transmitted over the air. In D16 mode you can choose between 8 channels with data sent every 9ms, and 16 channels with data sent every 18ms.
Please note that servo update rates are completely determined by the receiver. For ACCST please refer to your receiver manual for details on selecting the 9ms HS (High PWM Speed) mode. Ensure that your servos can handle this update rate.
Bind
- Initiate the binding process by selecting [Bind]. A voice alert will announce ‘Bind’ every few seconds to confirm that you are in bind mode. In D16 mode a pop-up menu will open during bind to allow selection of the operation mode of the receiver. The options refer to the PWM outputs, and apply to receivers that support choosing between these 4 options using jumpers. Ensure that the receiver and RF module firmware support this option. If they do not, it is necessary to do a regular bind with the bind button (please refer to the receiver manual). There are 4 modes with the combinations of Telemetry ON/OFF and channel 1-8 or 9-16. This is useful when using two receivers for redundancy or to connect more than 8 servos using two receivers.
- Power up the receiver, putting it into bind mode as per the receiver instructions. (Generally done by holding down the Failsafe button on the receiver during power up.)
- The Red and Green LEDs will come on. The Green LED will go off, and the Red LED will flash when the binding process is completed.
- Tap OK on the transmitter to end the Bind process, and power cycle the receiver.
- If the Green LED on the receiver is on, and the Red LED is off, the receiver is linked to the transmitter. The receiver/transmitter module binding will not have to be repeated, unless one of the two is replaced. The receiver will only be controlled (without being affected by other transmitters) by the transmitter it is bound to.
Warning: Do not perform the binding operation with an electric motor connected or an internal combustion engine running.
Type: TD MODE
ACCESS and TD MODE change the way receivers are bound and connected with the transmitter. The process is broken into two phases. The first phase is registering the receiver to the radio or radios it is to be used with. Registration only needs to be performed once between each receiver / transmitter pair. Once registered, a receiver canbe bound and re-bound wirelessly with any of the radios it is registered with, without using the bind button on the receiver.
2.4G
The 2.4G RF module is already enabled. Select Internal or External (on ANT1 connector) Antenna. Although the RF stage has built-in protection, it is good practice to ensure that an external antenna has been fitted before selecting the External antenna. Please note that the antenna selection is on a per model basis, so each time a model change selection is made ETHOS sets the antenna mode for the given model.
Antenna
Select Internal or External (on ANT2 connector) Antenna. Although the RF stage has built-in protection, it is good practice to ensure that an external antenna has been fitted before selecting the External antenna. Please note that the antenna selection is on a per model basis, so each time a model change selection is made ETHOS sets the antenna mode for the given model.
Model ID
When you create a new model, the Model ID is automatically allocated. The Model ID must be a unique number because the Smart Match function ensures that only the correct Model ID will be bound to. This number is sent to the receiver during binding, so that it will then only respond to the number it was bound to. Receiver matching is still as important as it was before ACCESS.
Channel range
Choice of which of the radio's internal channels are actually transmitted over the air. In D16 mode you can choose between 8 channels with data sent every 9ms, and 16 channels with data sent every 18ms
Bind
Phase one: Registration
a) Initiate the registration process by selecting [Register]. A message box with 'Waiting....' will pop up with a repeating ‘Register’ voice alert.
b) While holding down the bind button, power up the receiver, and wait for the red & green LEDs to become active. The 'Waiting...' message changes to ‘Receiver Connected’, and Rx Name field will be filled in automatically.
c) At this stage the Reg. ID and UID can be set:
• Reg. ID: The Registration ID is at owner or transmitter level. This should be a unique code for your X20/X20S and transmitters to be used with Smart Share. It defaults to the value in the Owner Registration ID setting described above at the start of this section, but can be edited here. If two radios have the same ID you can move receivers (with the same Receiver No for a given model) between them by simply using the power on bind process.
• RX name: Filled in automatically, but the name can be changed if desired. This can be useful if you are using more than one receiver and need to remember which is bound to which channels.
• The UID is used to distinguish between multiple receivers used simultaneously in a single model. It can be left at the default of 0 for a single receiver. When more than one receiver is to be used in the same model, the UID should be changed. Please note that this UID cannot be read back from the receiver, so it is a good idea to label the receiver.
d) Press [Register] to complete. A dialog box pops up with 'Registration ok'. Press [OK] to continue.
e) Turn the receiver off. At this point the receiver is registered, but it still needs to be bound to the transmitter to be used. It is now ready for binding.
Phase two: – Model ID, Channel Range, Binding, and Module Option
Caution: Do not perform the binding operation with an electric motor connected or an internal combustion engine running.
Fail-safe emergency rates
When Fail-safe is enabled, 3 modes are available: No signal, Hold, Custom.
- No signal: when signal is lost, the receiver does not send a control signal to the rates on any channel. To use this type, select it from the menu and wait 9 seconds for the Fail-safe setting change to take effect.
- Hold: the receiver maintains the rates as they were before the signal was lost. To use this type, select it from the menu and wait 9 seconds for the Fail-safe setting change to take effect.
- Custom: the receiver keeps the rate value on all channels as you preselect it. Select the Fail-safe setting menu. Switch from Disconnect/Hold/Not Set to „Custom“. Select the channel for which you want to set fail-safe rates and confirm the selection. Then set the rates on each desired channel and confirm the selection. Wait 9 seconds for the Fail-safe setting change to take effect.
Note: If the fail-safe rates are disabled on the transmitter, the fail-safe rates set on the receiver will automatically be used. The S.BUS connector does not support „Disconnect“ mode, and will always use „Hold“ or „Custom“ mode.
Range check
A pre-flight range check should be performed before each flight. Select the „RF System“ section, select either the internal or external module, select „Action“, then „Range Check“ and confirm the selection. In range check mode, the effective range of the transmitter is reduced to 1/30. Press „Range Check“ again to return to normal mode.
A „Range Check“ voice alert will sound every few seconds to confirm that you are in range check mode. A pop-up window on the display will show the receiver UID and the VFR% and RSSI values to evaluate the reception quality. Under ideal conditions, when the transmitter and receiver are both 1 m above the ground, the Alarm should appear at a distance of approximately 30 m from each other.
Telemetry
FrSky offers a very comprehensive telemetry system. The power of telemetry has lifted the RC hobby to a whole new level, and allows much more sophistication and a much richer modeling experience.
Smart port – telemetry
FrSky's series of sensors are a hub-less design. Smart Port (S.Port) uses a three wire physical bus comprising of Gnd, V+ and Signal. S.Port telemetry devices are daisy chained together in any sequence and plugged into the S.Port connection on compatible X and S and later series receivers. The receiver can achieve half duplex communication at a rate of 57600bps (F.Port and FBUS are faster) with many compatible devices through this connection with little or no manual set up.
Physical ID
Smart Port supports up to 28 nodes including the host receiver. Each node must have a unique Physical ID to ensure that there are no clashes in communication. Physical IDs may range between 00 hex and 1B hex (between 00 and 27 decimal).
Dec | Hex | Default Physical ID |
00 | 00 | Vario |
01 | 01 | FLVSS |
02 | 02 | Current |
03 | 03 | GPS |
04 | 04 | RPM |
05 | 05 | SP2UART (Host) |
06 | 06 | SP2UART (Remote) |
07 | 07 | FAS-xxx |
08 | 08 | TBD(SBEC) |
09 | 09 | Air Speed |
10 | 0A | ESC |
11 | 0B | |
12 | 0C | XACT Servo |
13 | 0D | |
14 | 0E | |
15 | 0F | |
16 | 10 | SD1 |
17 | 11 | |
18 | 12 | VS600 |
19 | 13 | |
20 | 14 | |
21 | 15 | |
22 | 16 | Gas Suite |
23 | 17 | FSD |
24 | 18 | Gateway |
25 | 19 | Redundancy Bus |
26 | 1A | SxR |
27 | 1B | Bus Master |
The table above lists the default Physical IDs of FrSky S.Port devices. Please note that if you have more than one of any of them, the Physical ID of the duplicate devices must be changed to ensure that each device in the S.Port chain has a unique Physical ID.
Application ID
Each sensor may have multiple Application IDs, one for each sensor value being sent.
The Physical ID and the Application ID are independent and unrelated. For example the Variometer sensor has just one Physical ID (default 00), but two Application IDs: one for Altitude (0100) and the other for Vertical Speed (0110).
Another example is the FLVSS Lipo Voltage sensor, which has a Physical ID (default 01), and an Application ID for Voltage (0300). If you want to use two FLVSS sensors to monitor two 6S Lipo packs, you will need to use Device Config to change the Physical ID of the second FLVSS to an empty slot (say 0F hex), and also to change the Application ID from say 0300 to 0301. Because the Physical ID and the Application ID are independent and unrelated, both must be changed. The Physical ID must be changed for exclusive communication with the host receiver, and the Application ID must be changed so the receiver can distinguish between the data from Lipo 1 and 2.
Device | Application ID (hex) | Notes |
Vario | 010x
011x |
Altitude
Vertical Speed |
FLVSS Lipo Voltage Sensor | 030x | Lipo Voltage |
FAS100S Current Sensor | 020x
021x 040x 041x |
Current
VFAS Temperature 1 Temperature 2 |
Xact Servo | 068x | Current, Voltage, Temp, Status |
Above are a few example Application IDs. Please note that the Application ID parameter in Device Config presents a drop-down list of 4 digits to choose from; the default 4th digit is 0, but may be changed in a range of 0 to F hex (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) to ensure that all Application IDs are unique.
Please also note that:
a) A device may have more than one range of Application IDs, see for example the Current Sensor above.
b) Where two redundant receivers have their S.Port telemetry ports connected, then packets for a particular sensor received by either receiver will be merged even if the redundant receiver is on a different band or module.
S.Port key features:
Each value received via telemetry is treated as a separate sensor, that has its own properties such as:
- the sensor value
- the S.Port Physical ID number and Data ID (aka Application ID)
- the name of the sensor (editable)
- the unit of measurement
- the decimal precision
- option to log to the SD card
The sensor also keeps track of its min/max value.
As already mentioned more than one of the same sensor type can be connected, but the Physical ID must be changed in Device Config (or using the FrSky Airlink App or SBUS servo changer SCC) to ensure that each sensor in the S.Port chain has a unique Physical ID. Examples are a sensor for each cell in a 2 x 6S Lipo, or monitoring individual motor currents in a multi-motor model.
The same sensor can be duplicated, for example with different units, or for use in calculations such as absolute altitude, altitude above starting point, distance, etc.
Each sensor can be individually reset with a special function, so for example you can reset your altitude offset to your starting point without losing all the other min/max values.
With FrSky sensors, once set up, they are auto-discovered whenever the complete system is powered up. However, when initially installed, they must be manually "discovered" in order for the system to recognize them.
Telemetry sensors can be:
- played in voice announcements
- used in logical switches
- used in Inputs for proportional actions
- displayed in custom telemetry screens
- seen directly on the telemetry setup page without having to configure a custom telemetry screen
Displays are updated as data is received, and loss of sensor communication is detected.
FBUS – control and telemetry
The FBUS (previously F.Port 2.0) protocol is the upgraded protocol which integrates SBUS for control and S.Port for telemetry into one line. This new protocol enables one Host device to communicate on one line with several Slave accessories. For example FBUS servos are controlled on one daisy-chained connection while also sending their servo telemetry back to the receiver on the same connection. All FBUS devices connected to an ACCESS receiver (Host) can be configured wirelessly from the ACCESS radio on this protocol.
The FBUS baud rate is 460,800 bps, while F.Port was 115,200 and S.Port 57,600 bps. This fact alone makes the three protocols incompatible with each other.
Telemetry features in ACCESS
Single receiver telemetry with ACCESS works in the same way as before with ACCST.
Multi receiver telemetry
ACCESS Trio Control provides the ability to have three receivers for each RF path registered and bound in ACCESS transmitters. The three receivers are bound in the transmitter RF screen in positions RX1, RX2 and RX3 that enables the ability to access the receivers individually to map the port pins and make other changes to the RX.
ACCESS normally has one inbound telemetry path for each RF link or one link for each ISRM RF module. The Tandem systems are an exception with one TD ISRM that has a 2.4 and 900m section for two RF paths. The telemetry source receiver may change during a flight depending on RF conditions. ETHOS has an RX sensor that displays the telemetry source real-time and data logs the RX sensor data.
The most common application using S.Port would be by daisy chaining the S.Port sensor chain to all 3 receivers, which should be sharing a common power supply.
- Register and bind the receivers (refer to Model Setup).
- Connect the sensor and receiver Smart Ports in a daisy chain fashion.
- Discover new sensors (refer to Telemetry Setup), and test carefully that Smart Portswitching is working correctly.
The telemetry source will automatically switch depending on the active RX. The RX internal sensor displays the ID of the active RX that is sending telemetry, i.e. RX1, RX2 or RX3.
When the receiver telemetry source changes, linking of the receiver S.Ports will automatically continue telemetry from S.Port connected external sensors. However please note that it does not link internal receiver sensors. RSSI, VFR, RxBatt, ADC2 and RX(n) sensor data is sent for the source receiver, so that does change depending on the source.
Simultaneous telemetry from three receivers will come later. Further developments are expected in this area.
Sensor types:
1. Internal sensors
FrSky radios and receivers have built-in telemetry functions to monitor the strength of the signal being received by the model.
RSSI
Receiver Signal Strength Indicator (RSSI): A value transmitted by the receiver in your model to your transmitter that indicates how strong the signal is that is being received by the model. Warnings can be set up to warn you when it drops below a minimum value, indicating that you’re in danger of flying out of range. Factors affecting the signal quality include external interference, excessive distance, badly oriented or damaged antennas etc.
ACCESS
The default alarms for ACCESS are 35 for 'RSSI Low' and 32 for 'RSSI Critical'. Loss of control will happen when the RSSI drops to around 28.
ACCST
The default alarms for ACCESS are 35 for 'RSSI Low' and 32 for 'RSSI Critical', while for ACCST they are 45 and 42 respectively. Loss of control will happen when the RSSI drops to around 28 for ACCESS and 38 for ACCST.
The warning for when telemetry is lost completely is announced as 'Telemetry Lost'. Be aware that further alarms will NOT sound, because the telemetry link has failed, and the radio can no longer warn you of an RSSI or any other alarm condition. In this situation it is wise to turn back to investigate the problem.
Note that when the radio and receiver are too close (less than 1m) the receiver may be swamped causing spurious alarms, resulting in an annoying "Telemetry Lost" - "Telemetry Recovered" alarm loop.
VFR
Prior to ACCESS V2.1, RSSI was based on a combination of received signal strength and lost frame rate. Lost frames have now been removed from the RSSI calculation, and added as a new sensor VFR (Valid Frame Rate) to provide a measure of Link Quality.
A warning can be set up to warn you when VFR drops below a minimum value, indicating that the link quality is becoming dangerously low. The default 'Low value warning' is 50.
RxBatt
Another standard internal sensor is the receiver battery voltage.
ADC2
Some receivers support a second analog voltage input, which is available in telemetry as sensor ADC2.
2. External sensors
The current FrSky telemetry system makes use of FrSky Smart Port sensors. The X and S and later series of telemetry enabled receivers have the Smart Port interface. Multiple Smart Port sensors can be daisy chained together, making the system easy to implement. Most receivers also have either one or both A1/A2 analog input ports, which are useful for monitoring battery voltages, etc.
Telemetry settings
Discover and edit sensor options including data logging. When the sensors are discovered they have an individual description for 2.4G or 900M so the sensor values can be used throughout the system. Up to 100 sensors are supported.
Calculated sensors may be added, including Consumption, Distance and Trip, Multi Lipo, Percent, Power and Custom.
Sensors
Discover new sensors:
Once the sensors have been connected, and the radio and receiver have been bound and are powered up, enable ‘Discover new sensors’ to discover new sensors available. A flashing dot in the left column indicates sensor data being received, or the value shows in red if no data is being received. Up to 100 sensors are supported.
During discovery the screen will be automatically populated with all the sensors found.
Stop discovery:
Move the ‘Discover new sensors’ switch to OFF to stop discovery once the sensors have been discovered.
Delete all sensors:
This option will delete all sensors so you can start again.
Editing and configuring sensors
Tap on a sensor, then select 'Edit' from the popup dialog to edit the sensor settings. Alternatively select 'Move Down' to reorder sensors, or 'Delete' to remove it.
Value
Displays the current sensor reading.
ID
The ID is the sensor ID. The sending receiver ID is also shown.
Name
The sensor name, which may be edited.
Unit
The unit of measurement (dB in this example).
Decimals
The decimal precision.
Range
The low and high limits of a range can be set as a fixed value for scaling. This is mostly used when using a telemetry value as a source for a channel. This allows the Range to set to the desired scale.
Write logs
When enabled, the sensor data will be logged to the SD card.
Sensor lost warning delay
When set to ‘Not Set’ will suppress the sensor lost warning. Alternatively, a delay of 1 to 10 seconds may be set, with a default of 5s. This makes it possible to filter out short losses, but the risks must be understood.
Reset
A source can be configured to reset the sensor.
Sensor specific warnings
The edit menu may vary for depending on the sensors, for example:
RSSI, VFR, Vert. speed, range etc.
Create DIY sensor
This option allows you to add a DIY or 3rd party sensor.
Value
Sensor value being received.
Auto detect
Auto detect will list all sensors detected on the S.Port/F.Port connection to the receiver. Select your DIY sensor from the list.
Physical ID
Two character physical ID of the sensor. This will be populated by Auto Detect if selected.
Application ID
Four character Application ID of the sensor. This will be populated by Auto Detect if selected.
Module
Allows Internal or External RF module to be selected. This will be populated by Auto Detect if selected.
Band
Allows 2.4G or 900M to be selected. This will be populated by Auto Detect if selected.
RX
Allows RX1, RX2 or RX3 to be selected. This will be populated by Auto Detect if selected.
Protocol precision/unit
Allows the precision for the incoming protocol to be set, from 0 to 3 decimals. It also allows the measurement units to be selected.
Display precision /unit
Allows the precision to be displayed to be set, from 0 to 3 decimals. It also allows the display measurement units to be selected.
Range
The low and high limits of a range can be set as a fixed value for scaling. This is mostly used when using a telemetry value as a source for a channel. This allows the Range to set to the desired scale.
Ratio
The default 100% ratio may be changed to correct readings being received.
Offset
The default offset of 0 may be changed to correct readings being received.
Write logs
When enabled, the sensor data will be logged to the SD card. Logs are enabled by default.
Sensor lost warning delay
When set to ‘Not Set’ will suppress the sensor lost warning. Alternatively, a delay of 1 to 10 seconds may be set, with a default of 5s. This makes it possible to filter out short losses, but the risks must be understood.
Reset
A source can be configured to reset the sensor.
Create calculated sensor
Calculated sensors may be added, including Consumption, Distance, Trip, Multi Lipo, Percent, Power and Custom.
Checklist
The Checklist function provides for a set of Preflight Checks. This is a group of safety features that take effect when powering up the radio and/or loading a model from the model list.
The default checks include radio is in silent mode, failsafe not set, switches and pots check, radio low battery, RTC battery low, etc. The switches check shows the direction the switch should be moved, please refer to the red dots in the warning screen example above.
Please note that contrary to the alert, only the OK or RTN key will skip the Preflight Checks.
Additional checks can be set below.
Throttle check
To enable throttle check, select the operator to be used. The options are ‘<’ less than, ‘~’ approximately equal, or ‘>’ greater than.
The preflight check will warn you if the throttle stick is outside of the value set in the value parameter
Fail-safe check
When enabled, it will warn you if Failsafe has not been set for the current model. It is highly advisable to leave this enabled!
Switches check
For each switch, you can define whether the radio requests that switches to be in the desired predefined positions. If switches have been given user defined names in System / Hardware / Switches Settings, the names will be displayed.
The ‘Load all switches positions’ option can be used to read the desired positions from the current switch positions.
The check options are shown above.
Function switches check
For each function switch, you can define whether the radio requests that switches to be in the desired predefined positions. The options are shown above.
The ‘Load all function switches positions’ option can be used to read the desired positions from the current function switch positions.
Pots/sliders check
Defines whether the radio requests the pots and sliders to be in predefined positions at startup. The desired pot values can be entered for each pot.
The ‘Load all pots positions’ option can be used to read the desired positions from the current pot positions. A careful check must be made to ensure that the automatically selected operators are as desired (i.e. ‘~’ vs ‘<’ or ‘>’).
Logic witches
Logical switches are user programmed virtual switches. They aren’t physical switches that you flip from one position to another, however they can be used as program triggers in the same way as any physical switch. They are turned ON and OFF (in logical terms they become True or False) by evaluating the input conditions against the programming for the logical switch. They may use a variety of inputs such as physical controls and switches, other logical switches, and other sources such as telemetry values, mixer values, timer values, gyro and trainer channels. They can even use values returned by a LUA model script (to be supported).
Up to 100 Logic Switches are supported.
There are no default Logic Switches. Tap on the ‘+’ button to add a Logic Switch.
Once Logic Switches have been defined, tapping on one will bring up the above popup menu, allowing you to edit, add, move, copy/paste, clone or delete that switch.
Selecting 'Move' will bring up arrow keys allowing the logic switch to be moved up or down.
Adding logic switches
Name
Allows the Logic Switch to be named.
Function
The functions available are listed below. Please note that all functions may have normal or inverted outputs. Please also refer to the shared parameters section, as well as the telemetry and comparison of sources sections following the function descriptions below.
A ~ X
The condition is True if the value of the selected source 'A' is approximately equal (within about 10%) to 'X', a user defined value.
In most cases, it is better to use the approximately equals function rather than the 'exactly' equals function.
A = X
The condition is True if the value of the selected source 'A' is 'exactly' equal to 'X', a user defined value.
Care must be taken when using the 'exactly' equals function. For example, when testing if a voltage is equal to a setting of 8.4V, the actual telemetry reading may jump from 8.5V to 8.35V, so the condition is never met and the Logical Switch will never turn on.
A > X
The condition is True if the value of the selected source 'A' is greater than 'X', a user defined value.
A < X
The condition is True if the value of the selected source 'A' is less than 'X', a user defined value.
|A| > X
The condition is True if the absolute value of the selected source 'A' is greater than 'X',a user defined value. (Absolute means disregarding whether 'A' is positive or negative,and just using the value.)
|A| < X
The condition is True if the absolute value of the selected source 'A' is less than 'X', a user defined value. (Absolute means disregarding whether 'A' is positive or negative, and just using the value.)
∆ > X
The condition is True if the change in value 'd' (i.e. delta) of the selected source ‘A’ is greater than or equal to the user defined value 'X', within the 'Check interval'. If the 'Check interval' is set to '---', then the check interval becomes infinite.
|∆| > X
The condition is True if the absolute value of the change '|d|' in the selected source ‘A’ is greater than or equal to the user defined value 'X'. (Absolute means disregarding whether ‘A’ is positive or negative.). again, if the 'Check interval' is set to '---', then the check interval becomes infinite.
Range
The condition is True if the value of the selected source 'A' is within the range specified.
AND
The AND function can have multiple values. The condition is True if all the sources selected in Value 1, Value 2 ... Value(n) are true (i.e. ON).
OR
The condition is True if at least one or more of the sources selected in Value 1, Value 2 … Value(n) are true (i.e. ON).
XOR (Exclusive OR)
The condition is True if only one of the sources selected in Value 1, Value 2 … Value(n) are true (i.e. ON).
Timer generator
The Logical Switch toggles ON and OFF continuously. It switches on for time ‘Duration Active’, and OFF for time ‘Duration Inactive’.
Sticky
The Sticky function is latched on (i.e becomes True) when the’Trigger ON condition’ switches from False to True, and holds its value until it is forced to False when the ‘Trigger OFF condition’ switches from False to True. This can be gated by the optional ‘Active Condition’ parameter. This means that if the ‘Active Condition’ is True, then the Logical Switch output follows the Sticky function's condition. However, if the ‘Active Condition’ is False, then the Logical Switch output is also held False.
Note that the Sticky function continues to operate, even if its output is gated by the ‘Active Condition’ switch. As soon as the ‘Active Condition’ switch condition becomes True again, the Sticky function's condition is switched through to the Logic Switch output.
Edge
Edge is a momentary switch that becomes True for the period specified in 'Duration' when its edge trigger conditions are satisfied.
Rising edge option
During = '0.0s'
During is in two parts [t1:t2]. With t1 of During = 0.0s and t2= 'Rising Edge', the logic switch becomes True (for the period specified in 'Duration') the instant the 'Trigger On Condition' transitions from False to True.
During >= '0.0s
During is in two parts [t1:t2]. With t1 of During a positive value (say 5.0s) and t2= 'Rising Edge', the logic switch becomes True (for the period specified in 'Duration') 5 seconds after the 'Trigger On Condition' transitions from False to True. Any additional 'spikes' during the t1 period are ignored.
Falling edge option
During = '0.0s'
During is in two parts [t1:t2]. With During t1=0.0s and t2= '---' (Falling Edge), the logic switch becomes True (for the period specified in 'Duration') the instant the 'Trigger On Condition' transitions from True to False.
During >= '0.0s
During is in two parts [t1:t2]. With t1 of During a positive value (say 3.0s) and t2= '---' (Falling Edge), the logic switch becomes True (for the period specified in 'Duration') when the 'Trigger On Condition' transitions from True to False, having been True for at least 3 seconds.
Pulse option
During is in two parts [t1:t2]; if values are entered for both t1 and t2, then a pulse is needed to trigger the logic switch.
The Logic Switches all have a number of shared parameters:
Active condition
The Logic Switches can be gated by the optional ‘Active Condition’ parameter. This means that if the ‘Active Condition’ is True, then the Logical Switch output follows the Function's condition. However, if the ‘Active Condition’ is False, then the Logical Switch output is also held False.
Note that the Sticky function continues to operate, even if its output is gated by the ‘Active Condition’ switch. As soon as the ‘Active Condition’ switch condition becomes Trueagain, the Function's condition is switched through to the Logic Switch output.
Delay before active
This value determines the time for which the Logic Switch conditions have to be True before the Logic Switch output becomes True. (Not relevant to Timer Generator and Edge.)
Delay before inactive
Similarly, this value determines the time for which the Logic Switch conditions have to be False before the Logic Switch output becomes False. (Not relevant to Timer Generator and Edge.)
Min duration
Once the Logic Switch becomes True, it will remain True for the duration specified. If the duration is the default 0.0s, the logic switch will only become True for one mixer processing cycle, which is too short to see, so the LSW line will not go bold.
Note: A comment may be added as explanation of its use or function, to aid in understanding. The comment is displayed when a logic switch is added to a value widget.
Logic switches – use with telemetry
If the source of a logic switch is a telemetry sensor, if your sensor is active then the Logic Switch will be active.
Comparison of sources
Normally source (A) is compared to a fixed Value (X). However, comparison of two same�format (i.e. having the same units) sources is allowed. For example, two timers, or two voltages, or two RPM sources may be compared.
Option to ignore trainer input
In Logic Switches the sources may have this option set to ignore sources coming from the trainer input. A typical application is where a logic switch is configured to detect movement of the master trainer’s sticks (e.g. Elevator stick) to allow for instant intervention if things go wrong. This option is needed to prevent the student stick inputs from triggering the logic switch.
Special functions
Special Functions can be configured to play values, play sounds, etc. Up to 100 Special Functions supported.
There are no default Special Functions. Tap on the ‘+’ button to add a Logic Switch.
Once Special Functions have been defined, tapping on one will bring up the above popup menu, allowing you to edit, add, move, copy/paste, clone or delete that switch.
Selecting 'Move' will bring up arrow keys allowing the special function to be moved up or down.
Currently the following Special Functions are supported:
- Reset
- Screenshot
- Set fail-safe
- Play track
- Play value
- Haptic
- Writelogs
Action: Reset
State
Enable or disable this Special Function.
Active condition
The Special Function may be Always On, or activated by switch positions, function switches, flight modes, logic switches, trim positions or flight modes.
To select the inverse of for example switch SG-up, if you long press Enter on the switch name and select the Negative check box in the popup the switch value will change to !SG-up. This means the Special Function will be active when switch SG is not in the up position.
Global
When selecting Global, the special function is added to all existing models and any new model created in the future. If an existing model already has the function the Global function is added as a new function. Turning OFF the Global function on any model removes the function from all models except the current model selected.
Reset
The following categories may be reset:
- Flight data: resets both telemetry and timers
- All timers: resets all 3 timers
- Whole telemetry: resets all telemetry values.
Action: Screenshot
Will save a screenshot into the location:
SD Card (drive letter)/screenshots/
State
Enable or disable this Special Function.
Active condition
The Special Function may be Always On, or activated by switch positions, function switches, flight modes, logic switches, trim positions or flight modes.
To select the inverse of for example switch SG-up, if you long press Enter on the switch name and select the Negative check box in the popup the switch value will changes to !SG-up. This means the Special Function will be active when switch SG is not in the up position.
Global
When selecting Global, the special function is added to all existing models and any new model created in the future. If an existing model already has the function the Global function is added as a new function. Turning OFF the Global function on any model removes the function from all models except the current model selected.
Action: Set Fail-safe
At the time of writing, this Special Function is still under construction.
Action: Play track
State
Enable or disable this Special Function.
Active condition
The Special Function may be Always On, or activated by switch positions, function switches, logic switches, trim positions or flight modes.
Global
When selecting Global, the special function is added to all existing models and any new model created in the future. If an existing model already has the function the Global function is added as a new function. Turning OFF the Global function on any model removes the function from all models except the current model selected.
File
Select the wav file to be played.
The file should be located in: SD Card (drive letter)/audio/
Note that the standard audio files are generated by the Google Text-to-Speech tools.
Repeat
The value may be played once, or repeated at the frequency entered here.
Skip on startup
If enabled, the file will not be played on startup.
Action: Play value
State
Enable or disable this Special Function.
Active condition
The Special Function may be Always On, or activated by switch positions, function switches, logic switches, trim positions or flight modes.
Global
When selecting Global, the special function is added to all existing models and any new model created in the future. If an existing model already has the function the Global function is added as a new function. Turning OFF the Global function on any model removes the function from all models except the current model selected.
Value
Select the source whose value is to be played. The source may be from any of the following:
- Analogs, i.e. sticks, pots or sliders
- Switches
- Logic switches
- Trims
- Channels
- Gyro
- System Clock (Time)
- Trainer
- Timers
- Telemetry
Repeat
The value may be played once, or repeated at the frequency entered here.
Action: Haptic
This Special Function assigns haptic vibration.
State
Enable or disable this Special Function.
Active condition
The Special Function may be Always On, or activated by switch positions, function switches, logic switches, trim positions or flight modes.
Global
When selecting Global, the special function is added to all existing models and any new model created in the future. If an existing model already has the function the Global function is added as a new function. Turning OFF the Global function on any model removes the function from all models except the current model selected.
Pattern
Sets the pattern of the haptic. Options are single, double, triple, quintuple and very brief.
Strength
Select the strength of the haptic vibration, between 1 and 10. The default is 5.
Repeat
The haptic may be executed once, or repeated at the frequency entered here.
Action: Write logs
Log files are stored in a ‘.csv’ format in the ‘Logs’ folder on the SD card. The files can be read and displayed by OpenTX Companion or any spreadsheet software. LibreOffice is a free open source MS Office compatible package which includes a spreadsheet component. The RTC time and date are logged with the data, and are important to make sense of the data by separating the log data into sessions.
State
Enable or disable this Special Function.
Active condition
The Special Function may be Always On, or activated by switch positions, function switches, logic switches, trim positions or flight modes.
Global
When selecting Global, the special function is added to all existing models and any new model created in the future. If an existing model already has the function the Global function is added as a new function. Turning OFF the Global function on any model removes the function from all models except the current model selected.
Write interval
The logs write interval is user adjustable between 100 and 500ms.
Sticks/pots/sliders
Enables logging of Sticks/Pots/Sliders.
Switches
Enables logging of Switches.
Logic switches
Enables logging of Logic Switches.
Curves
Curves may be used to modify the control response in the Mixers or Outputs. While the standard Expo curve is available directly in those sections, this section is used to define any custom curves that may be required. The 'Add curve' function may also be reached from the Mixer and Outputs edit screens directly.
There are 50 curves available.
There are no default curves (except Expo which is built in). Tap on the ‘+’ button to add a new curve. Tapping on a list of curves brings up a dialog allowing you to Edit, Move, Copy, Clone or Delete the highlighted curve. You can also add another curve.
The initial screen allows you to name your curve, and to select the curve type.
The available curve types are:
EXPO
The default exponential curve has value of 40.
A positive value will soften the response around 0, while a negative value will sharpen the response around 0. Softening the response around mid stick helps to avoid over controlling the model, especially for beginners.
Function
The following mathematical function curves are available:
x > 0
If the source value is positive, then the curve output follows the source. If the source value is negative, then the curve output is 0.
x < 0
If the source value is negative, then the curve output follows the source. If the source value is positive, then the curve output is 0.
|x|
The curve output follows the source, but is always positive (also called ‘absolute value’).
f > 0
If the source value is negative, then the curve output is 0. If the source value is positive, then the curve output is 100%.
f < 0
If the source value is negative, then the curve output is -100%. If the source value is positive, then the curve output is 0.
|f|
If the source value is negative, then the curve output is -100%.
If the source value is positive, then the curve output is +100%.
Custom
Points count
The default custom curve has 5 points. You may have up to 21 points on your curve.
Smooth
If enabled a smooth curve is created through all points.
Easy mode = ON
Easy mode has equidistant fixed values on the X axis, and only allows the Y coordinates for the curve to be programmed.
Points config
With Easy mode ON, only the Y coordinates may be configured (see example above).
Easy mode = OFF
Easy mode has equidistant fixed values on the X axis, and only allows the Y coordinates for the curve to be programmed.
Points config
With easy mode OFF, both the X and Y coordinates may be configured, (see example above). Note that the -100% and +100% X coordinates for the curve end-points cannot be edited, because the curve must cover the full signal range.
Trainer
The trainer function is OFF by default.
Trainer mode = master
Link mode (Wireless OFF/ON)
The trainer link can be either via cable or wireless (Bluetooth). The cable should be a 3.5mm mono audio lead.
Mode
Allows selection between Normal Speed and High Speed for the Bluetooth link. For lower latency the High Speed setting should be used if both radios support it.
Local name
This is the local BT name that will be displayed in devices being connected. The default name is FrSkyBT, but may be edited here.
Local address
This is the local Bluetooth address of the radio.
Dist address
Once a Bluetooth device has been found and linked, the remote device's Bluetooth address is displayed here.
Search address
The Search Devices button will be available if the Trainer Mode is Master.
Tap on 'Search Devices' to put the radio into BT search mode. Found devices are listed in a popup dialog with a request to select a device. Select the BT address that matches the radio to be used as training mate.
Active condition
Control of the model can be transferred to the student radio by a switch or button, a function switch, logic switch, trim position, or flight mode.
Up to 16 controls may be transferred from the student radio to the master radio when the 'Active Condition' set above is active.
Tap on each channel to configure it individually.
Active condition
Each individual slave channel can also be controlled by the selected source. So for example the student’s elevator input can be disabled during a session.
Mode
OFF: disables the channel for trainer use.
Add: selects additive mode, where both master and slave signals are added so both teacher and student can act upon the function.
Replace: replaces the master radio's control with the student's, so the student has full control while the 'Active Condition' is active. This is the normal mode of use.
Percent
Normally set to 100%, but can be used to scale the Slave input.
Destination
Maps the slave radio's channel to the corresponding function.
Option to ignore trainer input
In Logic Switches the sources may have this option set to ignore sources coming from the trainer input. A typical application is where a logic switch is configured to detect movement of the master trainer’s sticks (e.g. Elevator stick) to allow for instant intervention if things go wrong. This option is needed to prevent the student stick inputs from triggering the logic switch.
Trainer mode = slave
Link mode (Wireless OFF/ON)
The trainer link can be either via cable or wireless (BT). The cable should be a 3.5mm mono audio lead.
Local name
This is the local BT name that will be displayed in devices being connected. The defaultname is FrSkyBT, but may be edited here.
Local address
This is the local Bluetooth address of the radio.
Dist address
Once a Bluetooth device has been found and linked, the remote device's Bluetooth address is displayed here.
Channels range
Selects which channel range is transferred to the master radio.
Device config
Device config contains tools for configuring devices like sensors, receivers, the gas suite, servos and video transmitters.
[The following devices are currently supported:
AirspeedCurrentSBECGas SuiteGPSLipo voltageRB 30/40RPMSxRSxR calibrationVariometerVS600 video transmitterXAct servosPressureTemperature]
Please refer to the device's manual for further details.
Please note that the ETHOS Device Config screen lets you change Physical IDs and Application IDs. If you have more than one device that have the same function, you would need to connect them one at a time, discover them in Telemetry / Discover New Sensors, then in Device Config change the Physical ID and Application ID, and then go back and rediscover them with the new ID. Please refer to the Telemetry section.
Configure screens
The main views are customized and configured by the Configure Screens top level function, which is accessed by the ‘Multiple Screens icon’ in the bottom menu bar.
The main views are user configurable by selecting widgets to display desired information such as telemetry and radio status etc. There can be up to eight user defined screens. The user can select from thirteen different screen widget configurations for each new screen with up to nine cells for displaying widgets. The widgets can display telemetry values, but also values from seventeen other different categories. Once the screens are configured with widgets they can be accessed using a touch swipe gesture or navigation controls. The top and bottom bar with their active icons remain displayed on all screens.
Touching the ‘Multiple Screens icon’ in the middle of the main screen bottom bar brings up the first screen for configuring screens.
Touch on ‘Screen1’ to configure the first default screen.
Configuring the main screen
By default the first screen has a large widget on the left to display the model’s bitmap, and three widgets on the right to display the three timers. These widgets may be reconfigured to display other parameters, or the entire screen layout can be replaced by a newly defined screen with a different number of cells or cell layout.
Each widget displays the widget type at the top left. For configurable widgets the source is shown at the bottom left of the widget, which may be changed by touching the down arrow. Once the source has been selected, the widget may be configured by touching the ‘Configure Widget’ button.
If the widget is not configurable, only a ‘Change Widget’ button is displayed.
Touching the “Change Widget’ button brings up a widget category dialog. Custom Lua widgets will also appear in the list.
Standard widgets
Model bitmap
Used to display the selected bitmap.
Value
The Value widget simply displays the value of the selected source.
Timer logs
The timer logs provide a log of timer values. The timer values are written when the timeris reset.
Long press on the widget to Clear Logs, Timer(n) Edit, Timer(n) Reset or configure the widget or screens.
GPS map
This widget supports a GPS map display. Please refer to the X20 Ethos thread on rcgroups for more details, especially post #8854.
LiPo
The Lipo widget will display Lipo voltage information from sensors such as FLVSS.
If the lowest cell voltage is below the ‘Low Voltage’ threshold, the voltages are displayed in red.
Channels
The Channels widget allows up to 8 channels to be displayed in bar chart format, with either horizontal or vertical bars.
The example above shows two Channels widgets, the left one showing 4 channels vertically, while the right one shows 8 channels horizontally.
Line chart
The Line Chart widget allows the selected source to be charted.
Log period
The log period can be set. Using a 500ms period, the chart will cover about 6 minutes before starting to scroll off the page, while 1s will cover about 12 minutes.
Flexible range
If Flexible Range is turned on, then the vertical axis will be scaled according to the Min and Max settings. In the example above, the top widget has been set for Flexible Range and the chart shows a source swing of +26% to -22% so far.
Min/Max
If Flexible Range is turned OFF, then the vertical axis will be scaled according to the to suit the input. In the example above, the bottom widget has a fixed range of -100% to +100%.
Once a choice has been made, a ‘Configure Widget’ button appears, allowing further configuration of the widget.
Adding additional screens
Tap on the ‘+’ button next to ‘Screen1’ to add an additional screen.
You can select from 13 different layouts (including full screen and a choice of two home screens) having up to 9 widgets. These can then be configured as for screen 1.
Screens may be re-ordered or even deleted. The screen editing dialog is invoked by tapping on Screen1, or Screen2, etc.
Adding custom widgets
Custom widgets are typically lua scripts which normally come in the form of a single ‘main.lua’ file, which is commonly kept in a subfolder with a name that suggest its functionality. This subfolder should be copied to the ‘scripts’ folder on the SD card. The widget will be automatically registered at startup. Configure Screens can then be used to configure the widget like any other.
Lua scripts
Ethos suite
Overview
The Ethos Suite PC application runs on a Windows PC or Mac and connects to FrSky radios that are running the ETHOS operating system. Ethos Suite connects to the radio via a USB cable.
Once connected to the radio the current release of ETHOS SUITE can do the following things:
- Determine the radio type, ID, and the versions of the firmware, the files in Flash memory, and the SD card files.
- Change the mode of the radio from running in bootloader mode to starting and running Ethos on the radio, with the option of switching back again.
- With the current radio status information displayed, Ethos Suite provides the user with selections for updating to the most current and correct firmware and files. It then downloads and installs them automatically. The user can select to update the outdated components, to update all, or to update the radio firmware or the Flash files or the SD card contents individually.
- Using the Model Manager a backup of the models on the radio can be saved to disk, or a previously saved backup may be restored to the radio. Models are not backwards compatible, so the older model files have to be restored from the PC when downgrading to older firmware.
- The FRSK Flasher can use the radio as a proxy to flash the internal module directly or any sensor, servo, or receiver.
- Flash the radio bootloader in DFU mode (power OFF connection).
- Convert images to ETHOS format.
- Convert audio files to ETHOS format.
- There is a Repair Tool for the X18/S, TW Lite and XE radios. If your radio cannot read from NAND or the settings cannot be saved, this tool can be used to reformat the internal storage.
- Eject USB connections.
- At startup there will be a notification if there is an ETHOS SUITE update available.
Installation takes place. when Suite is exited.
Note that besides the Tools, SUITE offers 3 modes of operation with the radio.
Radio in bootloader mode
The Radio tab is available for checking and updating the radio firmware and the Flash and SD card files to the latest versions.
The Model Manager tab is available for making a backup of the radio, or to restore a saved backup to the radio.
Radio in Ethos mode
In this mode Ethos Suite can use the radio as a proxy to flash the internal module directly or any sensor, servo, or receiver. The FRSK Flasher tab manages these operations.
Radio in DFU mode
The Radio is connected in power OFF mode, and the DFU Flasher tab is used for flashing the bootloader. This is required if for example the radio firmware has been corrupted and the radio no longer powers up.
Procedure for migrating to Ethos suite
- Ensure that you are on at least Ethos version 1.1.4, the minimum version needed to flash the new Ethos Suite compatible bootloader (FRSK format) from the File Manager on the radio. If not, you will need to manually update to 1.1.4 to be able to migrate to Ethos Suite for automated updates.
- Make a backup your SD card (it’s advisable to copy all of it to a folder on your computer).
- Download the zip file for the latest bootloader from https://github.com/FrSkyRC/ETHOS-Feedback-Community/releases (currently the bootloader is 1.4.3, please refer to the 1.4.3 release for the file) for your radio, and unzip it.
- Power the radio on in bootloader mode (hold the enter key down, keep it down and then press power ON) and connect the system to the PC with a data USB cable.
- Copy the bootloader to a folder on your SD card (normally the Firmware folder), then eject the drives and disconnect the radio from the PC.
- Start the radio, go to System / File Manager, tap the bootloader.frsk file you have just copied and select the ‘Flash bootloader’ option.
- Download and install the Ethos Suite. You should now be able to follow the sections below to update your radio firmware and the Flash and SD card files to the latest versions, and make use of the other Ethos Suite features.
- Please note that you may need to rename the bitmaps/user folder on the SD card to bitmaps/models if ETHOS Suite does not do it for you. This is the folder where user bitmaps are stored.
Conclusion
Principles of safe operation
Operating the models can be dangerous if you do not follow the appropriate safety guidelines. Here are some of the most important recommendations to help ensure safe operation.
- Before taking off, make sure the model responds properly to the gimbal movements on the transmitter. Also make sure all switches and other controls are functioning properly. If you find any problems, do not fly the model until all functions are working properly.
- Never fly in rain, strong winds or at night. Water can cause failure or improper operation and impair the control of the model, with the risk of a crash.
- Never turn off the power switch in flight when the model‘s engine is running or the battery is connected. In this case, control of the model will be impossible, and the model will crash. Even if you turn the switch back on, normal operation will not resume until the internal transmitter and receiver initialization processes are completed.
- Do not start the internal combustion engine or electric motor while wearing the neck strap. The strap can be caught by a spinning propeller, rotor, etc. and cause serious injury.
- Never fly in range check mode In this mode, the transmitter operates at reduced power and a crash could occur.
- Do not fly if you are physically or mentally indisposed, as this can be dangerous to yourself and others. Also, never fly under the influence of alcohol, narcotics or drugs affecting your senses.
- Do not fly near airports, near or over people, near residential buildings, schools, hospitals, or other places where people congregate, near high voltage power lines, tall buildings and structures, or communication facilities.
- If you place the transmitter on the ground in preparation for flight, do not place it in an upright position. The transmitter may tip over, the controls may become misaligned, and the propeller or rotor may spin unexpectedly and cause injury.
- Do not touch internal combustion engines, electric motors or controllers during or immediately after operation. These devices can become very hot during operation.
- For safety reasons, always fly with the model in line of sight at all times. Getting behind buildings or other large objects will not only cause you to lose sight of the model, but the obstruction will prevent the RF signal from the transmitter from propagating and cause you to lose control of the model.
- Always set fail-safe emergency rates for safety. Take special care to set the throttle to neutral in case of an emergency.
- Always check the charge level of the transmitter and receiver batteries before each takeoff. Low voltage will cause loss of control of the model and a crash.
- At the beginning of each flight day, check the operation of all control surfaces and perform a range check. If using the Trainer function, check that the model responds properly to both teacher and student transmitter controls. Even an incorrect setting of a single transmitter or model function can cause a crash.
- Before turning on the transmitter: 1. Always pull the throttle control all the way down (to neutral). 2. Turn the transmitter on first, then the receiver.
- Before turning off the transmitter after the internal combustion engine or electric motor has stopped (is in a condition where it cannot start again): 1. Turn off the receiver power switch. 2. Then turn off the transmitter power switch. If you turn the power on/off in reverse order, the propeller or rotor may spin unexpectedly and cause injury. Also, follow the above order when setting fail-safe emergency rates.
- When setting the transmitter, turn the engine off/shut down unless its operation is necessary for the setting. In the case of an electric motor, disconnect its cables. Use extra caution when setting the transmitter while the motor is running. Ensure that the model is properly secured and cannot come into contact with anyone or anything. An unexpected increase in RPM can cause serious injury.
Warranty and post-warranty service
All KAVAN electronic products are covered by a 2-year warranty covering all manufacturing defects and faults. When making a claim within the warranty period, please always present a copy of the proof of purchase with the product and provide the service personnel with as detailed and complete information as possible about the defect found, your usage and other information that will facilitate the assessment of the claim and speed up its settlement. Please make your claim at the shop where you purchased the product. If this is not possible, you can directly contact KAVAN Europe s.r.o.:
KAVAN Europe s.r.o. | Doubravice 110, 533 53 Pardubice | Czechia | +420 466 260 133 | info@kavanrc.com
Warranty and limitation of liability
As the manufacturer of this product, we have no control over your compliance with these instructions when wiring and installing the RC set into your model. Likewise, we have no control over the way you build, operate and maintain the RC set parts. For this reason, KAVAN must disclaim all liability for any loss, damage or financial cost that is caused by the improper use or operation of products imported by us, or that is in any way connected with such activity.
Except as otherwise provided by law, KAVAN‘s obligation to pay compensation shall (regardless of the legal arguments asserted) be limited to the purchase price for those KAVAN products that were directly involved in the event that caused the damage. This does not apply if the manufacturer has been judicially obliged to make unlimited compensation on the basis of proven wilful or gross negligence. We warrant that our products are in compliance with current legal provisions. The warranty does not cover failures and defects caused by:
- Misuse or improper use.
- Delayed, improper or no maintenance, or maintenance performed by unauthorized service.
- Incorrect wiring.
- Use of accessories not approved or recommended by KAVAN Europe s.r.o.
- Modifications or repairs not carried out by an authorised KAVAN Europe s.r.o.
- Inadvertent or deliberate damage.
- Normal wear and tear.
- Operation of the equipment outside the operating limits specified in the specification
KAVAN Europe s.r.o. warrants that this product is free from defects in both material and workmanship at the time of sale. KAVAN Europe s.r.o. also reserves the right to change or modify this warranty without notice. The equipment is subject to continuous improvement and refinement - the manufacturer reserves the right to change the design without notice.
This warranty certificate entitles you to a free warranty repair of the product supplied by KAVAN Europe s.r.o. within a period of 24 months. The warranty does not cover natural wear and tear due to normal use, as this is a product for modelling use, where the individual parts operate under much higher loads than normal toys are subjected to.
The warranty also does not cover any part of the equipment that has been improperly installed, roughly or improperly handled, or damaged in an accident, or any part of the equipment that has been repaired or altered by an unauthorized person (this includes the application of any waterproof sprays/coatings by the user). Like other fine electronics products, do not expose this equipment to high temperatures, low temperatures, moisture, dusty environments, violent mechanical shocks and impacts. Do not leave it in direct sunlight for extended periods of time.
Please claim warranty repairs from the shop where you purchased the set.
Recycling (European Union)
Electrical equipment bearing the crossed-out bin symbol must not be disposed of in normal household waste, instead, it must be taken to a specialised collection and recycling facility. In EU (European Union) countries, electrical equipment must not be disposed of in normal household waste (WEEE - Waste of Electrical and Electronic Equipment, Directive 2012/19/EU). You can take unwanted equipment to your nearest collection or recycling centre. The equipment will then be disposed of or recycled safely free of charge. By handing in your unwanted equipment, you can make an important contribution to protecting the environment.
EU Declaration of conformity
KAVAN Europe s.r.o. hereby declares that the radio equipment type: V20 and other equipment supplied with it are in compliance with the Directive 2014/53/EU. The full text of the EU Declaration of Conformity is available at the following website: http://www.kavanrc.com/doc. This 2.4GHz radio equipment can be used without prior registration or individual approval in all countries of the European Union.